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Abstract 
 

This paper evaluates the out-of-sample performance of two stochastic models used to forecast 
age-specific mortality rates: (1) the model proposed by Lee and Carter (1992); and (2) a set of 
univariate autoregressions linked together by a common residual covariance matrix (Denton, 
Feavor, and Spencer 2005). To this aim, death rates from 16 industrialized nations are used to 
compare observed ex-post mortality rates to the forecasts generated by the models. Several 
functions of the individual age-specific mortality rates are also entertained, including life 
expectancy at birth (e0), as well as alternative measures of the age-dependency ratio. The latter 
are constructed based on how the individual mortality rates enter a population projection, and 
thus, are meant to gauge the potential impact of mortality alone on public retirement programs. In 
general, both models are found to produce point forecasts for the individual mortality rates, life 
expectancy, and the dependency ratios that are fairly close to one another. Typically, the median 
projections of mortality moderately overpredict the actual death rates, particularly for the oldest 
age groups (ages 65–95 or older). Conversely, the large majority of the point forecasts of life 
expectancy at birth and the dependency ratios underestimate their observed values. The models 
also generate interval forecasts of e0 that are "too wide" as their empirical probability content 
often exceeds their nominal coverage. However, the Lee-Carter model tends to seriously 
underpredict the forecast uncertainty associated with both the death rates of the oldest ages and 
the age-dependency ratios, while the autoregressive approach overpredicts this uncertainty in 
most cases. 

   



Introduction  

Mortality is one of the key demographic variables affecting the flow of income and 

expenditures in pay-as-you-go public retirement programs. Indeed, a combination of 

population aging and declining fertility rates largely drives the currently projected 

financial imbalance in the U.S. Social Security system. In recent years, official mortality 

forecasts in a number of industrialized nations have come under greater scrutiny. The 

deterministic nature of these projections and the role that expert judgment plays in 

shaping them are often viewed by academics as sources of contention. Meanwhile, 

demographers and other social scientists are increasingly turning to statistical time series 

techniques to generate mortality forecasts that are consistent with a probabilistic 

representation of uncertainty. 

This paper will evaluate the performance of two alternative stochastic approaches that 

can be applied to project age-specific mortality rates. Mortality data from 16 

industrialized nations is used to carry out an extensive out-of-sample validation exercise 

comparing actual mortality rates to the pseudo-forecasts generated by the models. This 

analysis differs from other ex-post assessments published in the literature in two respects: 

First, in addition to reporting several single-valued aggregate measures of performance, it 

also investigates how forecast error is distributed across age groups and forecast 

horizons. Second, this paper is not only concerned with a model's ability to produce 

accurate point projections, but also with its capacity to generate a realistic depiction of 

forecast uncertainty in terms of the empirical probability content of its interval forecasts. 
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The remainder of the paper is structured as follows: an introduction of the two models 

that are the focus of the investigation; a description of the experimental design, followed 

by the proposed ex-post validation exercise, and a discussion on the most salient features 

of the mortality data used in the paper; a presentation on the out-of-sample performance 

results; and the conclusion. 

The Models  

Stochastic forecasts are typically generated based on some underlying time-series 

statistical model. This time series approach often involves a specified random disturbance 

shock process, as well as a recursive expression that posits current values of the series in 

question as a function of previous values. Once the model is fit to a particular data set and 

estimates of its parameters obtained, future values of the series can be produced by 

iterating the model forward. For simple models, the forecast distribution may be available 

in closed-form. Otherwise, the researcher can turn to simulation by drawing from the 

disturbance process to generate random sample paths of forthcoming observations. In 

either case, the result is not only a single point forecast but an entire probability 

distribution describing the uncertainty associated with future outcomes. 

Modeling and projecting age-specific mortality rates over time is a high-dimensional 

forecasting problem. Following the taxonomy suggested in Bell (1997), stochastic 

projection models can be categorized as parametric or nonparametric, although this can 

be a somewhat artificial distinction. The parametric or curve-fitting approach involves 

fitting a curve defined by a finite set of time-varying parameters to the mortality data, 

based on some optimization criterion. The resulting parameter estimates are then treated 
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as a time series that is projected to recover the different paths of the curve into the future 

(that is, the mortality forecasts). The nonparametric approach relies on principal 

components analysis to yield a linear transformation of the data, often in terms of an 

approximation of reduced dimensions (one or a few principal components). 

Stochastic projection methods can be further classified as univariate or multivariate 

depending on whether the generated forecasts take into account the interdependencies 

across the age groups. The former proceed by individually fitting each age-specific 

mortality rate to a univariate time series equation. Although the forecasts produced by 

univariate methods ignore the typically high cross-correlation among the different age 

series, they do not necessarily perform worse than multivariate models. For instance, in 

an ex-post validation experiment, Bell (1997) found that a random-walk with drift 

applied to each age series led to better short-term forecast performance than any of a 

variety of multivariate approaches. Nonetheless, there are several problems associated 

with the univariate route. First, while the projections may be more accurate for each 

individual age group, they can jointly imply unreasonable behavior. In particular, 

univariate methods can lead to odd shapes in the fairly regular structure of mortality over 

the entire age profile. Similarly, since this approach ignores the high degree of correlation 

among the age series, it is unlikely to provide an accurate picture of overall forecast 

uncertainty. 

This paper focuses on the forecast performance of two models. First, the multivariate 

nonparametric method proposed by Lee and Carter (1992). This model has gained 

increasing recognition over the years, becoming a benchmark technique to the most 

recent technical advisory panels to the Social Security Administration, the U.S. Census 
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Bureau, and several agencies around the world. The second model involves one of the 

approaches suggested by Denton, Feaver, and Spencer (2005). This parametric model fits 

first-order autoregressive processes to each age group separately. The resulting residuals 

are then used to estimate the covariance matrix of the multivariate disturbance process 

driving joint future variation in the age-specific mortality rates. 

The Lee-Carter Model 

The approach to mortality modeling proposed by Lee and Carter (1992) postulates the 

logarithm of a set of age-specific mortality rates as the sum of a time-invariant age-

specific element and a second component that changes over time. Formally, let M  

represent the A T×  dimensional matrix of mortality rates with individual elements ,a tm  

denoting the death rate for the population of individuals at age a  and time .t  Then, 

 ,,log( ) a a t a ta t km β εα + +=  (1) 

for 1, ,a A= …  and 1, .t T= …  

The age-specific set of parameters aα  describes the average shape of the log-

mortality rates for every age category. The second component is the product of a time-

varying index or trend of the general level of mortality tk  and a set of coefficients aβ  

that determine both the direction and magnitude by which mortality at every age varies 

with the index. Notice also that the parameters aβ  and tk  are not uniquely identified, 

since for any given constant ,c  an equivalent representation results by using /a cβ  and 

.tck  Thus, Lee and Carter (1992) suggest imposing the following constraints: 

  0,       1.
T A

t a
t a

k β= =∑ ∑  (2) 



 5 

These constraints imply that the estimate of aα  is simply the sample mean of the log-

mortality rates. 

The Lee-Carter model represents a special case of the principal components (PC) 

analysis applied by Bell and Monsell (1991) to forecast age-specific mortality rates. 

Intuitively, PC analysis yields an approximation of the A  age-specific mortality rates as 

the linear combination of p  "basic elements" or principal components estimated from the 

data, where typically .p A≤  One way to compute the latter is via singular value 

decomposition (SVD). Specifically, let M  define the matrix of centered age profiles 

obtained by subtracting the A   sample logarithmic mortality means from the columns of 

the matrix log( ).M  The singular value decomposition of M yields a representation 

involving the product of the following three matrices: 

 ,M BLU ′=�  (3) 

where L  is a diagonal matrix with the singular values ordered from high to low, while B  

is an orthonormal matrix whose first p  columns correspond to the first p  principal 

components.1 The Lee-Carter model uses only the first principal component ( 1).p =  

Therefore, the easiest way to estimate its parameters is by setting ˆaα  to the sample mean 

of the log-mortality rates, ˆ
aβ to the first column of B , and t̂k  to the first row of ,LU ′  

subject to the constraints in (2). These parameter values can be thought of as the least 

square estimates resulting from minimizing the sum of squared errors function 

 ( )2

,
, ,

min log( ) .
a a t

a t a a t
k

at

m k
α β

α β− −∑  (4) 

                                                           
1 Alternatively, the first p  principal components can be defined as the eigenvectors corresponding to the 

largest p  eigenvalues of the product .MM ′� �  
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Once equation (1) is fitted to the data, the parameter estimates ˆaα  and ˆ
aβ  are taken to be 

fixed, while the log mortality index t̂k  provides a univariate time series whose future 

values can be forecasted using standard Box-Jenkins techniques. In most applications, a 

random-walk with drift is empirically found to yield a suitable fit to t̂k  

 2
1

ˆ ˆ ,       (0, ),t t t t ek k e e Nμ σ−= + + ∼  (5) 

leading to the following maximum likelihood estimates for the drift and variance 

parameters:2 

 ( )
1 2

21
1

1

ˆ ˆ 1 ˆ ˆˆ ˆ ˆ,        .
1 1

T
T

e t t
t

k k
k k

T T
μ σ μ

−

+
=

−= = − −
− − ∑  (6) 

Moreover, future values of t̂k  can be obtained either analytically or via simulation, by 

iterating equation (5) forward 

 
1

ˆ ˆ  ,
h

T h T T i
i

k k h eμ+ +
=

= + +∑  (7) 

where conditionally on the estimates 1 2
ˆ ˆ ˆ, , , ,Tk k k…  the usual mean forecast is a straight line 

as a function of the forecast horizon ,h  with slope μ̂  

 1 2
ˆ ˆ ˆ ˆ ˆE | , , , .T h T Tk k k k k hμ+

⎡ ⎤ = +⎣ ⎦…  (8) 

It is then a simple matter to "plug" the projected values of the log-mortality index T̂ hk +  

back into equation (1) to recover the forecasts associated with each age-specific future 

mortality 

 ( )
,

,

ˆˆlog( )

ˆˆexp .

a T h a a T h

a T h a a T h

m k

m k

α β

α β
+ +

+ +

= +

= +
  

                                                           
2 See for instance Girosi and King (2004; Chapter 2). 
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The Lee-Carter model yields a parsimonious stochastic approach to mortality 

forecasting that is easy to implement and often produces reasonable forecasts for all-

cause age-specific mortality. The method, however, is not without its limitations. First, a 

linear trend in the mortality index tk  does not hold empirically in very long data sets. It 

entails a constant geometric rate of decline for each age-specific mortality 

 ,log( )
.a t t

a

d m dk

dt dt
β=  (9) 

Yet, there is evidence that in a number of industrialized countries, the age pattern of 

mortality decline over the past few decades has reversed (Lee and Miller; 2001). In 

particular, the rapid decline in infant and child mortality characterizing the first half of 

the twentieth century has diminished, with mortality decreasing faster for the elderly. 

Furthermore, the Lee-Carter model implies that the rates of mortality decline for different 

ages (for instance, 1a  and 2a ) maintain a constant ratio to each other over time, regardless 

of which univariate time series process is used to forecast tk : 

 1 1 1

2 2 2

,

,

log( ) /  /
.

log( ) /  /
a t a t a

a t a t a

d m dt dk dt

d m dt dk dt

β β
β β

= =  (10) 

As a result, the assumption of holding aβ  constant over time seems unrealistic. 

Finally, the Lee-Carter model incorporates uncertainty through a single source (the 

sampling uncertainty derived from forecasting tk ). It is also possible to accommodate 

additional uncertainty about the trend in mortality linked to the estimate of the drift 

parameter ,μ  as Lee and Carter (1992) originally discussed. However, this still ignores 

uncertainty in the estimation of the aβ  coefficients associated with ,tk  as well as the error 
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from fitting the model using only the first principal component. Some demographers have 

criticized the model’s interval forecasts as implausibly narrow. 

Some Extensions of the Lee-Carter Model 

There have been a number of refinements to the Lee-Carter specification. In fact, in their 

original article, Lee and Carter (1992) addressed the two modifications considered in this 

paper. In particular, the authors observed that the models’ forecasts do not match the 

initial conditions in the jump-off year (that is, the forecasts are not linked to the actual 

mortality rates at the end of the base period). One easy way to solve this problem is to set 

aα  equal to the most recently observed logarithmic age-specific rates, instead of their 

time average. However, Lee and Carter (1992) caution that such an approach might 

extrapolate features of mortality that are specific to the jump-off year and could have a 

negative impact on model fit and forecast performance. In subsequent papers, Lee (2000) 

and Lee and Miller (2002) seem to have reconsidered this position, favoring the modified 

value of aα  for forecasting purposes. Bell (1997), who also supports this bias correction 

step, finds dramatic improvements in short-term out-of-sample forecast performance 

when setting aα  equal to the logarithm of the age-specific rates in the base year.3 

Another improvement to the Lee-Carter model is concerned with the fact that the 

OLS estimates of its parameters are the values minimizing error in the logarithm of the 

death rates, rather than the death rates themselves. Consequently, the total number of 

                                                           
3 Notice that there are alternative ways to implement bias correction in the Lee-Carter model. For instance, 
Lee and Carter (1992) suggest setting the value of aα  to the most recent rates prior to performing SVD, 

while ignoring the normalization constraint on .tk  By contrast, Lee (2000) favors estimating the model as 

originally proposed, prior to changing .aα  This paper follows the latter approach. 
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deaths predicted by the model is not guaranteed to match the observed death counts in the 

sample. Lee and Carter (1992) propose a second stage reestimation of the mortality index 

by holding ˆ
aα  and ˆ

aβ  fixed, while searching for a new estimate t̂k ∗  satisfying the 

following equation 

 ( ){ },
ˆˆˆexp ,t a a t a t

a

D k Pα β ∗= +∑  (11) 

where tD  and ,a tP  are respectively the total number of deaths and the population age a  in 

year .t  Wilmoth (1993) suggests an alternative computational approach that estimates 

,aα  aβ , and tk  simultaneously via weighted least squares, using the number of deaths at 

each age as weights 

 ( )2

,, ,
min  log( ) .
a a t

at a t a a tk
at

D m k
α β

α β− −∑  (12) 

The first model this paper entertains is a variant of Lee-Carter, incorporating the bias 

corrections described in the previous paragraphs. Specifically, after some preliminary 

experimentation, a decision was made to settle on the following estimation approach: 

first, the model's parameters are computed by applying SVD on the matrix M�  of 

centered logarithmic age profiles. Next, aα  is set equal to the logarithm of the age-

specific rates corresponding to the last period in the sample. Finally, a second stage 

reestimation of tk  is performed to match total observed and fitted deaths. 

A First-Order Autoregressive Approach  

In a recent paper, Denton, Feaver, and Spencer (2005) suggest a number of multivariate 

time-series econometric specifications as alternatives to the Lee-Carter method. One such 
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possibility is to model the first difference of logarithmic mortality 

, , , 1log( ) log( ) log( )a t a t a tm m m −Δ = −  as a th -p order autoregressive process AR ( )p : 

 , , ,
1

log( ) log( ) .
p

a t a sa a t s a t
s

m c m eφ −
=

Δ = + Δ +∑  (13) 

Future changes in the individual mortality rates are determined by their own past values 

plus a random disturbance term , .a te  The age-specific series are estimated within a system 

of seemingly unrelated regression equations (SURE) to accommodate the significant 

contemporaneous correlation characterizing mortality data. Denton, Feavor, and Spencer 

(2005) further suggest a second specification, which they refer to as a quasi-vector 

autoregressive approach QVAR ( )p  

 , , ,
1

log( ) log( ) log( ) ,
p

a t a sa a t s sa t s a t
s

m c m K eφ φ∗
− −

=

⎡ ⎤Δ = + Δ + Δ +⎣ ⎦∑  

where tK  represents an index of mortality that is a function of all the individual age-

specific mortality rates, much like in the Lee-Carter model. 

The second model this paper entertains is a variant of equation (13) with 1p =  lags. 

Formally, let ,a tm∗  denote the annual rate of improvement in mortality expressed as the 

negative of the percent change in the central death rate: 

 , , 1
,

, 1

100 .a t a t
a t

a t

m m
m

m
−∗

−

−
= −  (14) 
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Each series is then fitted individually to a first-order univariate autoregressive AR(1) 

model4 

 2
, , 1 , ,,       (0, ).a t a a a t a t a t em c m e e Nφ σ∗ ∗

−= + + ∼  (15) 

Once parameter estimates ˆ ,ac  âφ , and 2ˆeσ  are computed, recursive substitution can 

generate forecasts of future rates in mortality improvement by iterating equation (15) 

forward 

 
1 1

, , ,
0 0

ˆ ˆ ˆˆ  .
h h

h i i
a T h a a T a a a a T h i

i i

m m c eφ φ φ
− −

∗ ∗
+ + −

= =

= + +∑ ∑  (16) 

The process ,a tm∗  can be shown to be covariance stationary if 1,aφ <  with mean and 

variance respectively equal to 

 
2

2
2

, .
1 1

a e
a a

a a

c σμ σ
φ φ

= =
− −

 (17) 

For a covariance stationary process, the mean h -step-ahead forecast, conditional on the 

previous observations is given by 

 , ,1 ,2 , ,
ˆˆ ˆE | , , , ( ),h

a T h a a a T a a a T am m m m mμ φ μ∗ ∗ ∗ ∗ ∗
+⎡ ⎤ = + −⎣ ⎦…  (18) 

indicating that the projection decays geometrically from , ˆ( )a T am μ∗ −  to the unconditional 

estimated mean ˆ ,aμ  as the forecast horizon h  increases. However, since each individual 

forecast ignores the typically high correlation among the age groups, the model is 

modified to accommodate a joint disturbance process. In particular, the estimated 

residuals ,ˆa te  are used to compute the following covariance matrix 

                                                           
4 The Congressional Budget Office's stochastic model of Social Security's long-term trust fund finances 
uses a similar approach (CBO; 2000). 
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 ˆ ,
S S

T

′
Ω =  (19) 

where each column of S  corresponds to the residuals obtained from each equation. 

Stochastic paths for the rates of mortality improvement are then generated by simulating 

random shock vectors ˆ(0, )te N∼ Ω  from the multivariate normal distribution. 

Data and Experimental Design  

The data sets used to carry out the ex-post validation exercise proposed in this paper were 

obtained from the Human Mortality Database (HMD) and consist of mortality rates from 

16 industrialized nations for males and females combined.5 Wilmoth (2004) documents 

the methods by which the raw data were converted into mortality rates. The investigation 

in this paper focuses on period death rates rather than cohort rates. In other words, the 

mortality rates are indexed by year of occurrence rather than year of birth, so that ,a tm  

denotes mortality at age a  occurring in year ,t  rather than the death rate of individuals 

aged a  born in year .t  While analysis of rates on a cohort basis might be preferable, a 

complete set of cohort mortalities requires a much longer time frame and can involve 

significant missing data problems. 

Formally, the period death rate ,a tm  is defined as the ratio 

 ,
,

,

,a t
a t

a t

D
m

E
=  (20) 

                                                           
5 The HMD is a collaborative project sponsored by the University of California at Berkeley and the Max 
Planck Institute for Demographic Research. The data, as well as both general and country specific 
documentation can be accessed via www.mortality.org or www.humanmortality.de. 
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where ,a tD  is the death count for the population in the age range [ , 1)a a +  on January 

1st of calendar year ,t  while ,a tE  represents the exposure-to-risk (that is, the population 

exposed to the risk of death), measured as total person-years lived in the same age 

interval and time period. Generally, for a given country and year ,t  death counts and 

exposure-to-risk are available by single year of age from birth (age 0) to the open interval 

110-years old and beyond (age 110 or older). Hence, to reduce the dimension of the 

forecasting problem and reasonably fit the data to the stochastic projection models, 

mortality rates were computed for the following 21 age groups: age 0, ages 1–4, ages  

5–9,…, ages 90–94, ages 95 or older. The group rates were obtained by aggregating 

single year of age values. For instance, the resulting death rate for the 1–4 age group at 

time t  was calculated as the ratio of total death counts for ages 1 through 4 over the sum 

of exposure-to- risk values for the same ages and time period. 

Ex-post validation analysis involves using an initial portion of the available data to 

estimate a set of models that are then used to generate forecasts for the remaining time 

period. This way, it is possible to compare the models' projections to the actual 

observations to determine how well the models would have performed in the past. The 

design of any ex-post validation experiment always requires somewhat arbitrary 

decisions. For instance, the researcher must select the specific time frame and length over 

which the behavior of the models should be investigated, the fraction of the data used for 

estimation purposes, and the evaluation criteria employed to measure forecast 

performance. The particular objectives of the analysis shape these decisions and constrain 

the applicability of any conclusions. Table 1 lists the historical period of mortality data 
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available for each of the 16 countries.6 The shortest sample corresponds to the United 

States (1959–2002) with 44 observations, while the longest sample belongs to Sweden 

(1751–2003), with 253 observations. 

This paper uses all available data regardless of potential country-specific concerns 

about variation in quality, particularly when the estimated mortality rates date back more 

than one century. This decision is justified by treating the selected stochastic models as 

general algorithms, whose mechanically-generated forecasts should be tested under 

multiple scenarios. Furthermore, to make the generated forecasts comparable across 

countries, the initial jump-off year (the first period to be forecast) is fixed to 1980 in all 

cases. This particular choice was made based on the shortest available data set, by 

roughly adhering to two guiding principles: First, for each series there should be at least 

as many in-sample observations as the length of the forecast horizon. Second, the 

estimation sample per series should be at least as large as the total number of variables to 

be projected (21 age groups). 

To minimize the impact of the selected jump-off year on the resulting projections, it 

is common practice in out-of-sample validation exercises to focus on the forecast error 

corresponding to fixed lead times, using different forecast origins. In other words, for 

every country, each model is fitted using all observations from the beginning of the series 

until 1979 and mortality projections generated from 1980 to the end of the data set. Then, 

the sample is expanded to include the next observation (1980). Upon reestimation, new 

forecasts are generated from 1981 to the end of the series. This process is repeated until 
                                                           
6 The mortality rates corresponding to Germany were obtained by pooling the death counts and risk-to-
exposure estimates listed separately for East and West Germany in the HMD. The U.K. data comprises 
England and Wales. 
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the only period left to forecast is the last available observation. For instance,  for each age 

group in the United States, , the projections generated over the various jump-off years 

(1980, 1981,…, 2001) yield a set of 23 forecasts involving a 1-year horizon, 22 forecasts 

involving a 2-year period, and eventually a single forecast 23 years ahead. The fourth 

column of Table 1 shows the size of the longest forecast horizon (from 1980 to the end of 

each series). By design, the analysis centers on evaluating forecast performance over the 

short– to medium-range (23 to 25-year horizons in most cases), a fact that is determined 

by the choice of initial jump-off year, given the small sample sizes of some of the data. 

The last column in Table 1 presents the total number of projected observations per age 

group, over all forecast horizons. 

Chart 1 displays three-dimensional surfaces, as well as contours of the logarithmic 

age profile of mortality corresponding to the United States and the United Kingdom. 

They serve to illustrate a number of features in all-cause mortality common to most 

nations. One characteristic of the data is the regularity in the shape of mortality over the 

ages. For any given period, mortality declines smoothly from birth until about ages 10–

14, then increases almost linearly for the remaining ages until death. Moreover, in the 

second half of the twentieth century, the death rates experience a sharp increase 

associated with motor-vehicle fatalities in the 15–19 age group, often referred to as "the 

accident hump." Notice also how the surface for the United Kingdom appears far less 

smooth than the one corresponding to the United States. The former contains a much 

longer data sample (1841–2003) that includes spikes in mortality associated with the two 

world wars and the 1918 Spanish influenza pandemic. 
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When modeling mortality, some researchers treat unusual data spikes as outliers by 

introducing dummy variables to remove their influence. An alternative view is that these 

observations represent rare but nonetheless potentially recurring shocks, and thus, their 

exclusion is likely to underestimate true uncertainty. The analysis in this paper subscribes 

to the latter practice, treating all observations equally. Yet a third possibility, as Lee and 

Carter (2000) suggest, is to incorporate additional uncertainty in every forecast period 

due to such events. For example, this can be accomplished by introducing a 1/( 1)T −  

chance of a shock to the mortality index tk  the size of the 1918 influenza pandemic, 

where T  denotes the sample size. Nevertheless, the authors report that this practice has a 

negligible effect in the resulting projections. 

A second characteristic in the age profile of all-cause mortality is a downward trend. 

That is, while mortality across the age groups maintains its regular shape, it also shifts 

downward over time. This can be clearly seen in the bottom graphs of Chart 1, which 

show the logarithm of the age mortality profile at three different points in time for the 

same two countries. It is evident that the death rates among the various age groups tend to 

move together. Thus, it is not surprising that a third feature of all-cause mortality 

involves a high degree of cross-correlation among the rates for different ages. 

Table 2 presents the sample correlation between each age series and its immediately 

adjacent group for all 16 countries. For instance, the top entry in the column of Table 2 

corresponding to Austria indicates that the estimated correlation between the age 0 and 

age 1–4 groups is 0.988. Similarly, the correlation between age groups 90–94 and 95 or 

older is 0.748 (the last entry in the same column). Evidently, mortality across the ages 
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shows a high degree of positive association. Finally, Table 3 shows the sample standard 

deviation of the mortality rates corresponding to several age groups. Clearly, there is 

much more variation in mortality within the older age groups (particularly for the last 

series age 95 or older), as well as before age 1. Typically, the standard deviation 

decreases rapidly from a relatively high value at birth (age 0), until it reaches the 10–14 

age group. Then, it increases steadily from ages 15–19 to the last series (age 95 or older), 

where it often attains its highest value.  

Before turning to the ex-post validation results presented in the next section, it is 

important to discuss a number of findings in the literature that are relevant to this paper. 

Denton, Feavor, and Spencer (2005) use Canadian mortality data from 1926 to 2000 to 

produce long-term forecasts of life expectancy at birth and ages 65 and 80, based on the 

specification in equation (13) with 2p =  lags. The authors utilize a partially parametric 

method to generate random variation via a bootstrap procedure. They also implement a 

fully parametric approach by drawing from a multivariate normal disturbance process, 

much like the second model entertained in this paper. Although Denton, Feaver, and 

Spencer (2005) do not conduct an analysis of the out-of-sample forecast performance of 

these models, they do find the point forecasts generated by the fully parametric approach 

much closer to the projections of the Lee-Carter method than the official forecasts of the 

Canada Pension Plan. 

Lee and Miller’s (2001) ex-post validation analysis also focuses on life expectancy at 

birth 0 ,e  comparing actual and hypothetical forecast errors in the Lee-Carter model with 
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those of the Social Security Administration (SSA).7 Using U.S. data from 1900 to 1998 

(with 1921 as the initial jump-off year), the authors find that the empirical distribution of 

the actual forecast error matches well its hypothetical counterpart within a 10-year 

period, but deteriorates over time. Generally, the Lee-Carter model tends to underpredict 

life expectancy, although not by as much as the official SSA projections. In addition, the 

interval forecasts of 0e  appear to be "too wide" up to the first 50 forecast horizons, while 

underestimating their hypothetical probability content for longer periods. Lee and Miller 

(2001) reach similar conclusions in more limited pseudo-forecast experiments using data 

from Japan, Canada, France, and Sweden. 

Finally, Bell (1997) implements an evaluation of the short-term out-of-sample 

forecast behavior of multiple models using U.S. central death rates for white males and 

females from 1940 to 1991 (with 1981 as the initial jump-off year). Unlike Lee and 

Miller (2001), Bell reports forecast error over the entire age profile instead of relying on 

life expectancy as a single-valued measure of forecast performance. He finds that a 

univariate random-walk with drift fitted separately to each age group outperforms all of 

the parametric and nonparametric multivariate approaches considered. Only the Lee-

Carter model with the type of bias correction discussed previously yields a similar 

forecast error to the univariate approach. 

Out-of-Sample Forecast Performance  

As previously mentioned, ex-post validation analysis provides a means to determine how 

well a set of models would have performed in the past, by comparing the forecasts 
                                                           
7 Notice that Lee and Miller (2001) employ a different variation in the second stage estimation of ,tk  

matching life expectancy for that year instead of total number of deaths. 
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generated by the models to the actual observations. This kind of analysis is not without its 

limitations, and should not be confused with forecasts that are generated in real time. The 

latter are produced prior to the forecast period, when the future outcome is truly 

uncertain. The former enjoy the advantage of perfect foresight, and are therefore based on 

an information set that was not available during the forecast period. Keeping these 

drawbacks in mind, ex-post validation is still a very valuable tool that cannot be replaced 

by in-sample goodness-of-fit measures. In particular, ex-post validation provides answers 

to "what if" type scenarios that are useful in specifying and calibrating models to be used 

for real time forecasting. 

To compare forecast performance among several models, the following elements 

must be specified a priori: (1) the variables of interest to be projected; (2) the estimators 

used to measure these variables; and (3) an appropriate criterion to evaluate the variables’ 

forecast performance. Clearly, with respect to the first point, the ultimate object of 

investigation is the 21 different age-specific mortality rates being modeled 

simultaneously. This paper looks at both the accuracy of the point projections produced 

by the models, and the ability of these projections to provide a realistic representation of 

forecast uncertainty. The means and medians of the generated forecast distributions are 

presented as two alternative point estimators. On the other hand, the capacity of the 

models to gauge forecast uncertainty is assessed by the behavior of their interval 

projections. To this aim, 90-percent confidence interval forecasts are also estimated using 

the 5th and 95th quantiles of the resulting forecast distributions. 

The performance of the point estimates is evaluated using the traditional root mean 

squared error (RMSE) measure. Conversely, the performance of the interval projections 
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is determined in terms of their empirical probability content (that is, the fraction of times 

the generated intervals actually include the observed ex-post mortality rates). If the 

interval forecasts enjoy an empirical probability content that is close to its hypothetical 

90 percent level, it is likely that the model does a good job at accommodating the 

uncertainty associated with its point projections and can be used reliably for inference. 

However, coverage alone is only part of the picture. Since by design a fixed forecast 

interval between 0 and 1 covers the entire sample space, it is guaranteed to contain the 

ex-post mortality rates 100 percent of the time. Yet, such an interval has no practical use 

for inference, as it does not convey any information not already known a priori. Hence, 

the average width of the generated forecast intervals is also reported. Clearly, one 

unequivocal way to rank the interval estimates generated by several models involves the 

trade-off between probability coverage and interval width. In particular, an interval 

forecast that is narrower than all others and also enjoys greater empirical coverage should 

be the preferred choice. 

Typically, when comparing multivariate forecast models, it is unusual for one model 

to outperform all others for every series projected at every forecast horizon. This is 

particularly likely in this application, given both the relatively large number of data sets 

and variables (21 age-specific mortality series for each of 16 samples). Therefore, to 

evaluate overall model performance, it is useful to adopt a single-valued measure that 

combines all the variables. One quantity to consider is life expectancy at birth 0, ,te  

defined as the average number of remaining years an individual born at time t  is 
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expected to live. Following the discussion in Wilmoth (2004), let ,a tl  denote the number 

of survivors at age a  in year t  
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out of an initial population arbitrarily set to 0,  100,000,tl =  for 1, , .a A= …  The person-

years lived in the age interval [ , 1)a a +  is given by 
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with ,a tw  representing the average number of years lived within the age interval.8 Then, 

period life expectancy at birth is defined as follows 
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where 0, tT  denotes the person-years remaining at birth 
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Evidently, life expectancy at birth is a highly nonlinear function of all of the age-

specific mortality rates that carries a natural interpretation. For this reason, it is often 

reported in practice as an overall summary measure of forecast performance, as in Lee 

and Miller’s (2001) ex-post analysis. Unfortunately, such an aggregate quantity can be 

deceiving in that the forecast error associated with individual age groups could 

                                                           
8 For single-year ages except age 0, ,a tw  is usually set to one-half, under the assumption that deaths occur 

uniformly. In addition, notice that for period life table calculations, the mortality rates ,a tm  are transformed 

into probabilities of death ,a tq  using standard procedures. 
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potentially cancel each other out in the computation of person-years remaining at birth, 

masking the extent of the forecast error experienced at particular ages. 

Bell (1997) uses an alternative gauge of overall performance that looks at forecast 

error over the entire age profile. For instance, for the point projections, the RMSE 

corresponding to a particular forecast horizon is computed by averaging over the squared 

difference of observed and projected mortality at every age. This kind of measure is 

typical in multivariate time-series econometric applications. While not nearly as intuitive 

in its interpretation as life expectancy, it does not suffer from the potential problem that 

the forecast errors at different ages might cancel each other out. However, the measure is 

not without its drawbacks. In particular, suppose that a few of the series experience error 

that is disproportionately high relative to the remaining ages. Then, those few groups will 

largely determine the resulting total forecast error. A more robust measure of forecast 

error in the age profile might entail using a weighted average, with weights determined 

by the sample precision of each age series (that is, the inverse of its sample standard 

deviation). This more robust measure would define the importance of the error 

contributed by every age group as a function of how much variation mortality at that age 

displays in the sample, relative to the remaining series. Nevertheless, for the purposes of 

the forthcoming analysis, equal weights are assumed throughout. 

In addition to both life expectancy at birth and the entire age profile as overall 

measures of forecast performance, the impact that mortality has on the program's future 

finances is an even more relevant criterion for a pay-as-you-go pension system. This 

impact is typically defined by the age distribution of the population, in terms of the old-

age dependency ratio (the ratio of retired to working age population). Of course, to 
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generate population forecasts, we would also need to model fertility and net migration, 

which is outside the scope of this paper. Nonetheless, it is still possible to evaluate the 

manner in which the age-specific mortality rates would actually enter into a population 

projection of the old-age dependency ratio, and thus, measure the effect that the mortality 

projections alone have on the program's finances. Specifically, recalling the previously 

defined number of survivors ,a tl  at age a  in equation (21), the following dependency 

ratios implied by the individual age mortality rates are entertained: 
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At a given point in time ,t  1, tδ  refers to the ratio of survivors at ages 65 or older over 

those ages 20 to 64. Alternatively, 2,tδ  embodies a more general measure of dependency 

encompassing both the youngest and oldest ages in the numerator (from birth to age 19, 

as well as ages 65 or older). 

For the purpose of illustration, Charts 2 through 4 display a number of projections 

generated at the initial jump-off year using the mortality data for the United States and 

United Kingdom. The top graphs in Chart 2 show actual mortality for the 10–14 age 

group, along with the median and 90-percent interval forecasts generated by the models 

from 1980 to the end of each series. The bottom graphs display forecasts corresponding 

to the 70–74 age group. The top of Chart 3 presents similar projections of life expectancy 

at birth, while the bottom graphs illustrate different measures of the dependency ratios 
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defined above. In particular, the thickest solid lines in the bottom part of Chart 3 

respectively represent the historical values of 1, tδ  and 2, ,tδ  based on the actual population 

figures from the Human Mortality Database. For instance, for the United States, the 

dependency ratios in the year 2000 were 1, 0.212tδ =  and 2, 0.698.tδ = 9 By contrast, the 

remaining lines in the same graphs represent the dependency ratios based on the mortality 

rates alone, abstracting from fertility and net migration. These are the quantities relevant 

to the ex-post analysis in this paper. Their values for the United States in 2000 were 

1, 0.351tδ =  and 2, 0.817.tδ =  Chart 4 shows projections of these two dependency measures. 

The experimental design of the ex-post analysis implemented in this paper looks at 

forecast error at fixed lead times, using different forecast origins. For every data set and 

model, 20,000N =  random paths are simulated from 1980 forward for each of the 21 age 

groups. Since the Lee-Carter model takes as inputs the logarithmic death rates while the 

AR(1) approach models the rates of mortality improvement, the generated paths are 

transformed back into mortality rates prior to computing the features of interest of the 

forecast distribution. The mortality paths are then used to calculate the mean, median, and 

5th and 95th quantiles for each age group and forecast period. In addition, the simulations 

corresponding to all 21 ages are also used to compute similar estimates for life 

expectancy at birth 0, te  and the dependency ratios 1, tδ  and 2, .tδ  Finally, the same process 

is repeated with other jump-off years (1981, 1982, 1983 and so on). This is done to limit 

the influence of any particular forecast origin on the results, and thus, improve the 

                                                           
9 For comparison, the corresponding values reported in Table V.A2 of the 2005 Trustees Report, based on 
the total Social Security area population at mid-year in 2000 are respectively 1, 0.208tδ =  and 

2, 0.693.tδ =  
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robustness of the findings. At the end of the exercise, there are n  projections of the 

quantities of interest with a 1-year forecast horizon, 1n −  projections 2 years ahead, and 

eventually, 1 projection n  years into the future, where n  denotes the longest forecast 

horizon available, as the fourth column of Table 1 shows. 

Once all the projections are obtained it is a simple matter to evaluate forecast error 

using the specified performance criteria. For the point estimators (means and medians), 

performance is measured in terms of RMSE. Formally, let , ,ˆ a t tm Δ  represent the tΔ -step-

ahead forecast of the mortality rate for age group a  in year .t  The RMSE associated with 

a particular age series and fixed lead time tΔ  is calculated as follows:  
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where it  represents the jump-off year of the forecast in question and ,a tm  denotes 

observed mortality. For instance, taking a 1-year forecast horizon ( 1),tΔ = for the United 

States (see Table 1) there are 23 forecasts spanning the period from 1980it =  to 2002.T =  

Similarly, there are 14 ten-step-ahead forecasts ( 10),tΔ =  with 1989it =  and 2002,T =  

while the single 23-years-ahead projection involves 2002it T= = . 

The performance of the interval forecasts is determined by computing the actual 

fraction of times ex-post mortality rates lie inside the intervals. Let , ,
ˆ

a t tC Δ  denote the area 

covered by the 90 percent tΔ -step-ahead interval forecast of mortality for age-group a  in 

year .t  Furthermore, define an indicator function taking a value of 1 if the calculated 

, ,
ˆ

a t tC Δ  includes the observed mortality rate, and 0 otherwise: 
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Then, the empirical probability associated with the interval projection at age a  and 

forecast horizon tΔ  is given by 
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A similar approach is used to calculate the average width of the intervals. 

Finally, the overall measures of performance are a function of either all or most of the 

21 age groups. In this case, the forecast error associated with the point estimates of the 

entire age profile at a particular forecast horizon tΔ  is simply obtained by averaging over 

the ages 
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Likewise, the RMSE associated with, for instance, the point projections of life 

expectancy at birth and forecast horizon tΔ  is computed as follows 
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Similar expressions for the dependency ratios are obtained by replacing 0, ,ˆ t te Δ  and 0, te  

above with the corresponding values of , ,î t tδ Δ  and ,i tδ . The extension of these equations to 

compute the empirical coverage and average width of the interval estimates is also 

obvious. In addition, it is straightforward to modify these expressions to estimate forecast 

error over multiple forecast horizons or the entire forecast period. 
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Forecast Performance of Point Projections 

The first four columns of  Table 4 present the resulting RMSE corresponding to the 

median forecasts of the Lee-Carter (LC) model for the following measures of overall 

forecast performance: the age profile, life expectancy at birth 0e , and the two age-

dependency ratios 1δ  and 2δ  defined in equations (25) and (26), respectively. These 

quantities are computed over all available forecast horizons. Since both the means and 

medians of the forecast distribution are entertained as plausible point estimators, columns 

5 through 8 in Table 4 display the ratio of RMSE between the two. Clearly, for the first 

three measures (the age profile, 0e , and 1δ ), the median is a better performing point 

estimator than the mean in the large majority of cases, as most of the ratios exceed 1. 

Only for the more comprehensive measure of dependency 2( )δ  do the mean projections 

generally exhibit lower RMSE than their median counterpart, although the differences 

between the two are fairly small. Moreover, while not shown for the sake of conciseness, 

the results corresponding to the AR(1) model are qualitatively similar. In light of these 

findings, this paper focuses exclusively on the median forecasts from this point forward. 

To facilitate comparison, columns 1 through 4 in Table 5 present the ratios of RMSE 

in the median forecasts between the LC and AR(1) models (again, over all forecast 

horizons). Notice how forecast performance can vary across the different specified 

criteria. For example, for the Netherlands or the United States, the AR(1) approach 

outperforms Lee-Carter over the age profile, while the latter model actually exhibits 

lower RMSE for the projections of life expectancy and the dependency ratios. 

Conversely, for Finland, Germany and Japan, the LC model enjoys lower RMSE over the 
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age profile but is outranked by the first-order autoregressive approach in the remaining 

measures. 

The LC model outranks the autoregressive approach in half of all cases for 1δ  and the 

age profile, while the AR(1) model displays lower RMSE in the other half. For life 

expectancy at birth 0 ,e  the LC model does better in 7 of the data sets but is outperformed 

in the remaining 9 cases. For the broader dependency measure 2 ,δ  the AR(1) approach 

outperforms the LC model in 11 out of the 16 countries. Furthermore, in most instances, 

the differences in performance between the models are relatively small (that is, most of 

the ratios are fairly close to 1). There are a few notable exceptions to this finding for the 

forecasts of 0.e  For instance, for France, the AR(1) approach reduces forecast error in life 

expectancy at birth by almost half relative to the LC model—likewise for the Netherlands 

and the United States. Overall, however, both models seem to display rather similar 

performance. 

The remaining columns in Table 5 report the percentage of times the median 

projections in both models fall below the actual values for each of the four evaluation 

criteria. Clearly, for a given measure, the percentages corresponding to each model are 

very close to one another, suggesting that both models generate forecasts that are roughly 

biased in the same direction. With the exceptions of Japan, Spain, and the United States, 

notice that over the age profile, the percentages in Table 5 fall below 50 percent, so that 

the models tend to moderately overestimate actual mortality in most cases. By contrast, 

the large majority of the forecasts of life expectancy at birth and the age-dependency 

ratios underestimate their observed values. Specifically, only the median projections 
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corresponding to Japan and the United States overpredict life expectancy, while the 

dependency ratios are also overestimated only for the United States. For the remaining 

data sets, between 70 percent to 99 percent of all generated forecasts underpredict 0 ,e  1δ , 

and 2.δ  

To gain insight into the results presented in Table 5 (the models' forecasts 

overestimate actual mortality but underestimate life expectancy and the age dependency 

ratios), it is important to consider the mechanism via which the age-specific mortalities 

enter the calculation of 0 ,e  1δ , and 2.δ  In all cases, the quantities that matter are the 

longitudinal numbers of survivors out of some initial population, as defined in equation 

(21). Suppose that a particular forecast ,ˆ a tm  overpredicts actual mortality at age a  and 

time .t  Then, the implied survival rate , ,ˆ ˆ(1 )a t a ts m= −  will underestimate the projected 

number of people that graduate into the next age category. Of course, whether the 

resulting future estimates of life expectancy at birth will underproject the observed values 

depends not only on the fraction of the age-specific rates that overestimate mortality, but 

also on the magnitude of their forecast error. Dependency ratios are further complicated 

by the fact that they comprise the quotient of longitudinal numbers of survivors at 

different ages, so that the distribution of both the bias and magnitude of forecast error 

across the ages plays a large role. 

Performance by Age Group 

One way to measure how error is distributed among the ages is to determine the 

percentage that each particular age group contributes to the value of total forecast error. 

For ease of presentation and to maintain consistency with how the dependency ratios 
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have been defined, the individual age groups are aggregated into three broad categories 

(ages 0–19, ages 20–64, and ages 65–95 or older, respectively), containing 5, 9, and 7 of 

the 21 original groups. Broadly, these three categories  encompass birth to young 

adulthood, the working population, and individuals in retirement ages. Following the 

discussion in the previous section, the RMSE associated with some individual age group 

a  over all forecast horizons tΔ  is determined by 
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where n  denotes the longest forecast horizon shown in Table 1. Similarly, the 

computation of RMSE over the entire age profile involves 
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with ja  representing either a single age group or a subset of ages, such as the 65–95 or 

older retirement category. It follows then, that the proportion ip  of total mean squared 

error (MSE) corresponding to ja  is given by 

 
( )

( )
( )

( )

2 2

2 2

RMSE RMSE
1 .

RMSE RMSE

a aa a a aj j
ip

A A

∈ ∉
= = −
∑ ∑

 (33) 

Table 6 displays the percentage of forecast error over the entire age profile that is 

attributed to two broad sets of ages. The first set comprises the initial 14 age groups being 

modeled (from birth to age 64). These series make up less than 1 percent of total forecast 

error in most cases, and less than 3 percent in both models and all 16 data sets. By 

contrast, the retirement ages account for 97 percent to 99 percent of total MSE. In terms 
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of model performance by age, the first three columns in Table 7 present the ratio of 

RMSE between models for the three broad age categories specified by the dependency 

measures. The first-order autoregressive approach outperforms the Lee-Carter model in 

11 out of the 16 countries for the youngest age groups (ages 0–19), 7 countries for the 

working population (ages 20–64), and half of all countries for the retirement category 

(ages 65–95 or older). Furthermore, a comparison of the ratios in the first column of 

Table 5 with those in the third column of Table 7 reveals that they are virtually identical 

in magnitude, confirming once more that the oldest age groups overwhelmingly 

determine total forecast error over the age profile. The remaining columns in Table 7 

show the percentage of the median forecasts that fall below the observed ex-post 

mortality rates by model and broad age category. Clearly, in all but one case (the United 

States), the models are far more likely to overestimate actual mortality for the oldest ages 

than for any age group. In most cases, over three-fourths of the generated projections for 

the 65–95 or older ages overpredict observed mortality. 

Two obvious patterns concerning the models' median forecasts emerge from Tables 6 

and 7. First, the bulk of forecast error is heavily concentrated among the oldest ages. 

Second, the majority of the forecasts corresponding to these age groups overestimate 

observed mortality. These findings shed additional light on the results shown previously 

in Table 5. In particular, a very high proportion of the forecasts for the 65–95 or older age 

groups overestimates mortality and hence, underestimates the number of population 

survivors at these ages. Furthermore, since these groups carry greater importance in 

determining how the magnitude of the forecast error is distributed across the ages, they 

are more likely to underpredict the total number of person-years remaining at birth, and 
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thus 0.e  Similarly, the 65–95 or older age groups enter the computation of the 

dependency ratios through the numerator. Consequently, if the number of survivors at 

these ages is underestimated, so are likely to be the values of 1δ  and 2.δ  The exception to 

this pattern involves the projections for the United States, where mortality is 

underestimated at the oldest ages instead, while the forecasts of life expectancy and the 

dependency ratios overestimate their ex-post values. 

Performance by Forecast Horizon 

To assess how the median forecasts change with the length of the forecast horizon, the 

generated projections are grouped into four periods: 1–5 years, 6–10 years, 11–15 years, 

and 16 or more years ahead. Notice that the last category varies with the final year of data 

available for each series, involving 16–23 years ahead in most cases. Table 8 presents the 

ratio of RMSE between models over the age profile, as well as the percentage of the 

median forecasts that fall below observed ex-post mortality over the various forecast 

horizons. Tables 9 through 11 display similar quantities for the projections of life 

expectancy at birth 0e  and the dependency ratios 1δ  and 2 ,δ  respectively. Although not 

discernible from the ratios in the first four columns of each table, as expected, forecast 

error generally increases with the distance of the forecast horizon. 

Beginning with the age profile in Table 8, the first-order autoregressive approach 

outperforms the Lee-Carter model in ten cases for the 1–5 and 11–15 year horizons and 

in eight cases for the 6–10 and 16 or more year periods. While not always true, the 

differences in model performance tend to increase with the length of the forecast horizon, 

with the largest divergence corresponding to Austria in the 16 or more year period, where 
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RMSE over the age profile for the AR(1) model is approximately 25 percent greater than 

for the LC approach. In most cases, a moderately larger proportion of the mortality 

forecasts tend to overpredict their observed values, except for Japan, where roughly 

three-fourths of the mortality forecasts involve underpredictions. The same pattern holds 

true for Spain and the United States, where approximately 50 percent of all forecasts 

underpredict mortality. Moreover, in about half of all countries, the percentage of 

projections overpredicting mortality increases as a function of the forecast horizon. 

Turning to the median projections of life expectancy at birth in Table 9, the LC model 

outperforms the AR(1) approach in thirteen countries for the 1–5 year horizon, nine 

countries for the 6–10 year period, eight countries for the 11–15 horizon, and seven 

countries for 16 or more years ahead. Barring a few exceptions typically involving the 

longest forecast horizons (such as France, the Netherlands, and the United States), most 

of these ratios are relatively close to 1. Moreover, excluding the United States and Japan, 

the projections generated by both models overwhelmingly underpredict life expectancy, 

particularly as the distance of the forecast horizon increases. In fact, at the 16 or more 

year horizon 100 percent of the forecasts of life expectancy at birth underpredict their ex-

post values for the majority of the data sets in both models. 

Finally, Tables 10 and 11 show the performance of the point projections of the 

dependency ratios. For the 1δ  ratio (survivors at ages 65–95 or older over ages 20–64), 

the LC model outperforms the AR(1) approach in ten cases for the 1–5 and 6–10 year 

horizons, nine cases for the 11–15 year period and eight cases for 16 or more years ahead. 

On the other hand, for the broader measure of dependency 2δ  (ages 0–19 and 65–95 or 
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older over 20–64), the LC approach outranks the autoregressive model in ten cases for 

the 1–5 year forecast period, six cases for the 6–10 year horizon, and only five cases for 

11–15 and 16 or more years ahead. For both measures of dependency and all sixteen data 

sets, the largest difference in performance between the models does not exceed 26 

percent at any forecast horizon. In all but one instance (the United States), the median 

projections of both dependency ratios underestimate their observed values increasingly as 

a function of the forecast period. At the 16 or more year horizon, virtually all of the 

generated forecasts underestimate the observed dependency values, while the converse is 

also true for the U.S. data (none of the median projections fall below the corresponding 

ex-post quantities). 

Forecast Performance of Interval Projections 

The first two columns in Table 12 display the empirical probability content of the 90-

percent forecast confidence intervals generated by the models for the age profile, over all 

forecast horizons. The third and fourth columns in the same table respectively present the 

average width of these intervals for the Lee-Carter model, and the ratio of average width 

between models. The last four columns in Table 12 show similar quantities for life 

expectancy at birth 0 ,e  while Table 13 displays analogous coverage and width measures 

for the two age dependency ratios 1δ  and 2.δ  

Beginning with the age profile, it is evident that over all the age groups, the first-

order autoregressive approach yields interval projections in every single case that exhibit 

greater probability content than the Lee-Carter model, but are also much wider. In 

general, the LC model seems more likely to generate mortality intervals that are "too 
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narrow" (that is., that fall below their nominal 90-percent level of coverage). Conversely, 

the AR(1) model tends to produce intervals that are "too wide." For instance, with the LC 

model, only 4 nations exhibit coverage greater than or equal to 90 percent (France, the 

Netherlands, Sweden, and Switzerland), while in 9 of the 16 cases empirical coverage 

falls below 80 percent. By contrast, with the first-order autoregressive approach, 

probability content is in excess of 90 percent in nine of the data sets, whereas only three 

countries exhibit coverage below 80 percent (Austria, Germany and Japan). On average, 

the interval forecasts of mortality produced by the AR(1) model are wider than those of 

the LC approach by a factor ranging from less than one-and-a-half times wider for the  

United States, to nearly 10 times wider for Finland (fourth column in Table 12). 

Turning to the projections of life expectancy at birth, it is clear that both models tend 

to generate intervals that are "too wide." With the exceptions of Austria and Germany in 

the AR(1) model and Austria, Canada, and Germany in the LC approach, empirical 

coverage exceeds 90 percent for the remaining countries and is either equal or closer to 

100 percent in most cases. Moreover, the differences in size between the interval 

forecasts generated by the two models are far less pronounced than for the age profile. In 

roughly half of the data sets, each model produces narrower intervals on average than the 

other. These findings highlight the type of cancellation effects that can occur when the 

age-specific mortality forecasts are combined to produce such a highly nonlinear 

aggregate measure of overall performance. Consider, for instance, the interval projections 

corresponding to Japan. In this case, over all age groups and forecasts horizons the 90 

percent interval projections generated by the Lee-Carter model contain observed 

mortality only 36 percent of the time. However, when the simulated paths are used to 
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compute 0 ,e  all 276 interval forecasts of life expectancy at birth contain the 

corresponding ex-post values, resulting in 100-percent probability coverage.10  The 

converse can also be the case. In the AR(1) approach, the interval projections of mortality 

for Austria over the age profile have an empirical probability content of 74 percent, while 

those associated with the LC model yield 66-percent coverage. Yet, for the latter model, 

the interval forecasts of life expectancy display 71-percent coverage, with an average 

width of 3.6 years over all forecast horizons. By contrast, the projections of life 

expectancy generated by the AR(1) model exhibit extremely poor coverage (24 percent) 

and are half the size of those produced by the LC approach. 

For the OASDI program, a more useful performance evaluation criterion regarding 

the age-specific mortality forecasts generated by the models involves the forecast error 

associated with the age dependency ratios presented in Table 13. In this case, with the 

exceptions of Austria and Germany, where empirical coverage is quite poor, the first-

order autoregressive approach produces interval forecasts with probability content in 

excess of 90 percent for both measures 1δ  and 2.δ  On the other hand, the Lee-Carter 

model generates intervals that are "too narrow" for half of the data sets and "too wide" for 

the other half. Specifically, empirical coverage in Austria, Belgium, Canada, Finland, 

Germany, Italy, Norway and the United Kingdom falls below 60 percent. Not 

surprisingly, the AR(1) model generates wider interval projections than the LC model in 

11 cases for 1,δ  and 15 cases for 2.δ  

                                                           
10 See the last column in Table 1. 
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Finally, Table 14 shows the performance of the interval projections generated by the 

models over the three broad age categories previously defined. In general, the Lee-Carter 

model tends to produce interval forecasts of mortality that exceed their hypothetical 

probability content at the youngest ages, but seriously underestimate it for the older age 

groups. For instance, in the 0–19 age category there are 12 cases with coverage in excess 

of 90 percent and only 3 countries with coverage below 80 percent (Germany, Japan and 

the United States). By contrast, for the retirement ages (65–95 or older), coverage stays 

above 90 percent in 2 countries (France and the Netherlands), while it falls below 80 

percent in the remaining 14 countries. On the other hand, for all three age categories  

(0–19, 20–64, and 65–95 or older), the first-order autoregressive approach generates 

interval forecasts with over 90-percent probability content in the majority of instances. 

Moreover, in every single case the AR(1) interval projections are narrower than those of 

the LC model for the youngest ages, but much wider for the 65–95 or older age class. 

Performance by Forecast Horizon 

Table 15 displays the empirical probability content and ratio of average width 

corresponding to the 90-percent interval projections of the models over the age profile 

and various forecast horizons (1–5, 6–10, 11–15 and 16 or more years ahead). Tables 16 

through 18 present similar quantities for the interval projections of life expectancy at 

birth 0e  and the two age dependency measures 1δ  and 2.δ  Although not always the case, 

coverage over the age profile tends to decrease with the length of the forecast horizon. 

For the 1–5 year period, the LC and AR(1) models generate interval forecasts with over 

80-percent coverage in 10 and all 16 countries, respectively. Out of these countries, 

coverage exceeds the hypothetical 90-percent level in 6 cases for the LC model and 12 
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cases for AR(1) approach. On the other hand, for the most distant forecast period (the 16 

or more year horizon), probability content lies above 80 percent in 6 countries for the LC 

model and 10 countries for AR(1) approach. Even at this forecast length, coverage 

exceeds 90 percent in half of all cases for the latter model. In terms of the size of the 

generated intervals, the LC model generates narrower projections over the age profile 

than the AR(1) model across all forecast horizons. As previously mentioned, this is 

because interval projections for the oldest age groups in the first-order autoregressive 

approach are much wider. 

Table 16 shows the empirical content of the interval projections of life expectancy at 

birth. Clearly, with the exceptions of Austria and Germany, where coverage deteriorates 

with the length of the forecast horizon, both models generate intervals that are "too 

wide." For most of the data sets there is 100 percent coverage at every forecast horizon. 

The forecast intervals of 0e  produced by the LC model are narrower than those of the 

AR(1) approach in 11 cases for the 1–5 year period, and 10 cases for the remaining 

forecast horizons. 

Finally, Tables 17 and 18 present the empirical probability coverage of the interval 

forecasts for the age-dependency ratios 1δ  and 2δ . Clearly, for the Lee-Carter model, 

performance tends to deteriorate dramatically with the distance of the forecast horizon. 

By contrast, with the exceptions of Austria and Germany, the AR(1) approach yields 

interval projections with 100-percent probability content in the large majority of cases 

across all forecast periods. For instance, over the 1–5 year horizon, coverage in the LC 

model exceeds 80 percent in 15 cases for 1,δ  and in 13 cases for 2.δ  On the other hand, 
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over the longest forecast period (16 or more years ahead), these quantities drop down to 8 

and 6 cases, respectively. In fact, for this same period, probability content in the LC 

model is actually 0 percent in five and eight nations for the 1δ  and 2δ  ratios, respectively. 

Conversely, over the 16 or more years horizon, the AR(1) approach yields coverage in 

excess of 90 percent in 13 and 12 cases. Generally, the interval forecasts corresponding to 

the first-order autoregressive approach are wider on average than those of the LC model. 

Conclusion  

This paper evaluates the out-of-sample forecast performance of two stochastic models 

used to forecast age-specific mortality rates: (1) a variant of the Lee-Carter (LC) model 

that accommodates bias correction for the jump off year; and (2) a set of univariate first-

order autoregressions AR(1) with a common residual covariance matrix. To this aim, 

mortality data from 16 industrialized nations, each comprising 21 different age groups is 

used to compare observed ex-post mortality rates to the forecasts produced by the 

models. To  assess overall model performance, several functions of the individual age-

specific mortality rates are entertained, including forecast error over the entire age 

profile, life expectancy at birth 0 ,e  and two alternative measures of the age-dependency 

ratio. The first measure (denoted 1δ ) involves the ratio of population ages 65–95 or older 

to those ages 20–64. The second criterion 2( )δ  entails a broader measure of dependency 

that includes both the youngest and oldest age groups (the ratio of population ages 0–19 

and ages 65–95 or older to those aged 20–64). 

With few exceptions, it is generally found that the differences in RMSE associated 

with the median projections of the models are not substantial. In most cases, the median 
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forecasts of both models tend to moderately overpredict actual mortality over the age 

profile. This is particularly the case for the retirement ages (65–95 or older), where a high 

proportion of the forecasts corresponding to the oldest age groups overestimate mortality. 

Conversely, the large majority of the median forecasts of 0 ,e  1δ  and 2δ  underestimate 

their observed values, with the proportion of forecasts involving underestimation 

increasing with the length of the forecast horizon. 

The retirement ages account for the overwhelming majority of total forecast error 

over the age profile. For the youngest age category (ages 0–19), the first order 

autoregressive approach outperforms the LC model in 11 of the 16 countries considered. 

However, over all ages and forecast horizons each model displays lower RMSE than the 

other in half of all cases. The same is true for the median projections of 0e  and 1,δ  where 

over all forecast periods, each model outperforms the other in roughly half of the data 

sets entertained. On the other hand, the median projections of 2δ  corresponding to the 

AR(1) model exhibit lower forecast error than those of the LC method in 11 cases. In the 

very short-run (1–5 year horizons), the LC model outranks the AR(1) approach in 13 

countries for the median forecasts of 0 ,e  and 10 countries for the median projections of 

1δ  and 2.δ  

While differences in the performance of the point projections of both models tend to 

be fairly small, much more variation is found in the performance of the generated 90–

percent confidence interval forecasts. The AR(1) approach typically produces interval 

projections of mortality across all ages that are close to and often exceed their 

hypothetical 90-percent probability content. The LC model also generates interval 
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forecasts with adequate empirical coverage for the youngest age groups (ages 0–19), but 

seriously underestimates the 90-percent level of coverage for the retirement ages (65–95 

or older). Not surprisingly, the AR(1) approach produces much wider intervals on 

average than the LC model for the oldest age category, although it also yields narrower 

projections for the youngest ages. Hence, over the entire age profile, the LC model is 

more likely to generate interval projections that are "too narrow," whereas the AR(1) 

method tends to produce interval forecasts that are "too wide." 

For life expectancy at birth 0 ,e  both models clearly generate interval forecasts that are 

"too wide" (that is, with coverage in excess of 90 percent). In fact, for the large majority 

of countries the empirical probability content of the projections of 0e  is 100 percent, even 

over the longest forecast horizons (16 or more years ahead). With a couple of exceptions, 

the AR(1) approach also generates interval forecasts of the dependency ratios 1δ  and 2δ  

with 100-percent empirical coverage. In this case, however, the projections of the LC 

model deteriorate quickly with the length of the forecast period, so that at the 16 or more 

years horizon, coverage is adequate in about half of the data, but extremely poor for the 

other half. Indeed, over this same forecast period the LC interval projections of 2δ  in 8 of 

the 16 countries never contain their corresponding ex-post values (that is, there is 0 

percent probability content). 

From the perspective of a pay-as-you-go public retirement program, the age-

dependency ratios seem to be more relevant performance evaluation criteria than either 

the projections of life expectancy at birth or the age profile. In light of the evidence 

suggesting the tendency of the Lee-Carter model to underestimate forecast uncertainty for 
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these ratios, a conservative approach to modeling mortality appears to favor the first-

order autoregressive model. 
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Country Data period
Total

observations
Longest

forecast horizon
Total

forecasts

Austria 1947–2002 56 23 276
Belgium 1931–2002 72 23 276
Canada 1921–2002 82 23 276
Denmark 1835–2004 170 25 325
Finland 1878–2002 125 23 276
France 1899–2002 104 23 276
Germany 1956–2002 47 23 276
Italy 1872–2002 131 23 276
Japan 1950–2002 53 23 276
Netherlands 1850–2003 154 24 300
Norway 1846–2002 157 23 276
Spain 1908–2003 96 24 300
Sweden 1751–2003 253 24 300
Switzerland 1876–2004 129 25 325
United Kingdom 1841–2003 163 24 300
United States 1959–2002 44 23 276

Table 1.
Historical period covering mortality rates for 16 industrialized countries 

SOURCE: Human Mortality Database.
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Country Age 0 Age 5–9 Age 15–19 Age 30–34 Age 55–59 Age 75–79 Age 85–89
Age 95
or older

Austria 0.02176 0.00028 0.00028 0.00051 0.00223 0.01625 0.03080 0.03933
Belgium 0.03248 0.00072 0.00085 0.00132 0.00334 0.01863 0.03786 0.06341
Canada 0.03574 0.00079 0.00076 0.00117 0.00286 0.01662 0.03134 0.03085
Denmark 0.06913 0.00400 0.00217 0.00314 0.00584 0.02108 0.04059 0.08381
Finland 0.06111 0.00387 0.00290 0.00416 0.00532 0.02488 0.04735 0.11736
France 0.05575 0.00148 0.00322 0.00599 0.00537 0.03002 0.05755 0.07646
Germany 0.01125 0.00016 0.00019 0.00026 0.00159 0.01508 0.03139 0.04542
Italy 0.08209 0.00436 0.00266 0.00369 0.00590 0.03431 0.05122 0.08229
Japan 0.01580 0.00049 0.00044 0.00102 0.00374 0.02343 0.04499 0.06483
Netherlands 0.09767 0.00362 0.00231 0.00384 0.00669 0.02712 0.04830 0.08296
Norway 0.03911 0.00299 0.00241 0.00325 0.00454 0.01686 0.02235 0.04836
Spain 0.06603 0.00259 0.00234 0.00358 0.00587 0.03573 0.03440 0.03142
Sweden 0.08862 0.00571 0.00261 0.00444 0.00945 0.03316 0.04673 0.09039
Switzerland 0.06970 0.00189 0.00184 0.00328 0.00793 0.03667 0.06074 0.10513
United Kingdom 0.06679 0.00319 0.00270 0.00403 0.00698 0.02246 0.03632 0.04949
United States 0.00679 0.00011 0.00013 0.00018 0.00211 0.00949 0.02035 0.01630

SOURCE: Author's calculations.

Table 3.
Sample standard deviation of mortality rates over different age groups, by country

Age profile e0 δ1 δ2 Age Profile e0 δ1 δ2

Austria 0.01270 1.55660 0.03082 0.02887 1.006 1.057 1.005 0.996
Belgium 0.00787 1.08555 0.02921 0.03067 1.020 1.168 1.007 0.979
Canada 0.00422 0.91612 0.01810 0.01684 1.001 1.024 1.002 0.996
Denmark 0.00693 0.85787 0.01476 0.01346 1.004 1.124 1.020 0.982
Finland 0.00977 1.46775 0.03279 0.03256 1.005 1.147 1.009 0.972
France 0.00803 1.22205 0.02809 0.02854 1.081 1.367 1.024 0.928
Germany 0.00801 1.65540 0.02827 0.02494 1.021 1.031 0.997 0.993
Italy 0.01469 1.89066 0.03745 0.03691 1.007 1.094 1.013 0.992
Japan 0.01434 0.40010 0.01164 0.01453 1.003 0.962 1.016 1.007
Netherlands 0.00687 0.45293 0.01030 0.01043 0.995 1.541 1.056 0.954
Norway 0.00972 1.26707 0.02499 0.02474 1.001 1.083 1.011 0.990
Spain 0.00703 0.41821 0.01380 0.01659 1.010 1.342 1.060 1.006
Sweden 0.00698 1.90267 0.03206 0.02914 1.025 1.144 1.034 0.992
Switzerland 0.00662 1.19000 0.02600 0.02568 1.024 1.096 1.018 0.996
United Kingdom 0.00851 1.90517 0.03731 0.03622 1.011 1.107 1.012 0.987
United States 0.00854 0.31685 0.00782 0.00861 0.991 0.981 1.002 1.006

Table 4.
Lee-Carter (LC) Model: RMSE of medians and ratio of RMSE between means and medians,
by country

NOTES: LC = Lee-Carter Model; RMSE = root mean squared error.

SOURCE: Author's calculations.

Country

LC: RMSE of median forecasts LC: Ratio of RMSE (mean/median)
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Age 
profile e0 δ1 δ2

Age 
profile e0 δ1 δ2

Age 
profile e0 δ1 δ2

Austria 1.224 1.194 1.141 1.125 22.89 96.59 97.85 98.28 20.11 98.60 99.81 99.43
Belgium 0.918 0.979 0.911 0.865 49.87 95.39 97.49 97.49 48.67 97.40 98.26 98.26
Canada 0.988 0.997 0.970 0.956 31.26 96.11 96.52 96.75 27.45 96.32 97.21 96.77
Denmark 1.045 1.124 1.020 0.965 41.88 79.01 79.96 81.49 41.38 83.15 81.12 80.90
Finland 1.045 0.954 0.947 0.848 41.88 93.24 96.76 98.07 41.38 93.77 98.81 98.83
France 0.901 0.574 0.893 0.818 33.29 97.07 97.46 97.44 37.10 98.62 98.84 95.23
Germany 1.013 0.933 0.937 0.944 15.40 98.03 98.64 98.25 15.06 98.41 99.03 99.05
Italy 0.985 0.992 1.020 1.005 32.26 98.47 98.63 98.44 36.54 99.05 98.82 98.82
Japan 1.002 0.845 0.985 0.969 71.89 20.47 78.85 85.70 70.50 29.67 83.37 87.07
Netherlands 0.943 1.450 1.234 1.136 46.25 89.57 92.00 92.82 42.21 95.47 95.92 96.38
Norway 0.914 0.978 0.924 0.900 33.79 89.76 93.63 95.51 33.76 90.33 93.62 94.86
Spain 0.964 0.923 0.888 0.849 51.62 72.22 92.69 94.72 53.05 71.30 93.35 94.31
Sweden 1.154 1.181 1.159 1.132 11.44 98.56 98.04 97.66 10.77 99.65 99.65 99.48
Switzerland 1.102 1.044 1.023 0.982 31.32 95.46 98.04 98.20 30.38 96.83 98.36 98.53
United Kingdom 1.023 1.114 1.035 0.989 29.33 99.12 99.12 98.94 25.92 99.65 99.65 99.65
United States 0.970 1.413 1.235 1.191 50.41 33.07 19.01 17.79 54.86 24.64 13.05 11.82

SOURCE: Author's calculations.

NOTES: RMSE = rootmean squared error; AR(1) = Lag 1 autoregression; LC = Lee-Carter Model.

Table 5.
Ratio of RMSE in median forecasts between models and percentage of forecasts below actual,
by country

Country

Ratio of RMSE AR(1)/LC LC: Below actual (percent) AR(1): Below actual (percent)

LC AR(1) LC AR(1)

Austria 0.13 0.12 99.87 99.88
Belgium 0.63 0.64 99.37 99.36
Canada 2.24 2.12 97.76 97.88
Denmark 0.70 0.66 99.30 99.34
Finland 0.70 0.58 99.30 99.42
France 0.38 0.42 99.62 99.58
Germany 0.29 0.28 99.71 99.72
Italy 0.39 0.38 99.61 99.62
Japan 0.15 0.12 99.85 99.88
Netherlands 0.25 0.35 99.75 99.65
Norway 0.53 0.54 99.47 99.46
Spain 0.35 0.26 99.65 99.74
Sweden 0.90 0.82 99.10 99.18
Switzerland 0.33 0.30 99.67 99.70
United Kingdom 1.57 1.65 98.43 98.35
United States 0.09 0.13 99.91 99.87

NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Table 6.
Percentage of total forecast error corresponding to various age categories, by country

SOURCE: Author's calculations.

Country

Ages 0–64 Ages 65–95 or Older
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Ages 0–19 Ages 20–64
Ages 65–95

or older LC AR(1) LC AR(1) LC AR(1)

Austria 1.131 1.195 1.224 49.62 41.63 20.36 20.65 7.05 4.04
Belgium 0.916 0.926 0.918 67.82 64.29 68.22 66.29 13.45 14.86
Canada 1.166 0.951 0.989 52.79 50.86 39.59 39.17 37.03 37.47
Denmark 0.883 1.038 1.045 36.77 31.71 33.17 29.38 24.87 21.92
Finland 0.968 0.949 1.045 62.47 55.50 50.01 52.48 21.47 18.23
France 0.624 1.019 0.901 31.56 44.02 54.50 56.21 7.25 7.60
Germany 1.093 0.989 1.013 23.09 19.42 15.46 17.43 9.84 8.91
Italy 0.930 1.001 0.986 52.51 62.96 43.17 47.96 3.76 2.99
Japan 0.893 0.935 1.002 96.34 95.64 96.28 94.31 23.07 21.91
Netherlands 0.989 1.130 0.942 38.87 36.90 58.71 54.69 35.51 29.96
Norway 0.916 0.923 0.914 31.99 33.28 48.26 47.36 16.48 16.62
Spain 0.720 1.039 0.964 68.86 68.63 71.87 74.11 13.29 14.84
Sweden 0.929 1.152 1.154 18.29 19.60 8.14 7.54 10.79 8.60
Switzerland 1.055 1.054 1.102 37.51 39.30 42.81 44.39 12.12 6.00
United Kingdom 0.995 1.060 1.023 19.85 15.40 52.39 48.32 6.45 4.64
United States 1.515 0.983 0.969 28.35 36.11 42.40 43.60 76.47 82.75

Country

Table 7.
Ratio of RMSE in median forecasts between models and percentage of forecasts below actual,
by country and broad age-categories

SOURCE: Author's calculations.

NOTES: RMSE = root mean squared error; AR(1) = Lag 1 autoregression; LC = Lee-Carter Model.

Ratio of RMSE AR(1)/LC Ages 0–19 Ages 20–64 Ages 65–95 or older

1–5 6–10 11–15
16 or
more 1–5 6–10 11–15

16 or
more 1–5 6–10 11–15

16 or
more

Austria 1.015 1.160 1.213 1.249 36.04 22.50 19.01 17.35 32.90 20.87 16.97 13.60
Belgium 0.930 0.953 0.973 0.874 49.92 51.35 51.15 48.12 45.98 49.55 50.54 48.64
Canada 0.883 0.874 0.953 1.049 38.74 41.61 46.97 40.83 37.84 40.27 45.58 41.68
Denmark 1.026 1.030 0.995 1.066 42.69 38.49 32.35 21.39 39.69 35.89 28.51 16.57
Finland 1.011 0.952 0.955 1.125 40.89 40.62 44.74 46.05 34.87 40.26 45.03 45.03
France 0.962 0.953 0.918 0.878 40.35 30.76 30.72 32.05 39.22 39.70 35.96 34.87
Germany 0.996 1.004 1.000 1.019 28.56 22.03 12.37 4.93 28.42 23.76 13.97 1.97
Italy 1.019 1.003 0.988 0.981 30.70 28.21 36.82 32.91 28.30 31.83 41.83 41.33
Japan 0.996 1.033 1.023 0.995 68.01 72.06 74.11 72.83 63.03 70.47 74.26 72.83
Netherlands 0.972 0.915 0.948 0.940 46.13 44.90 47.38 46.44 38.24 41.38 44.61 43.55
Norway 0.932 0.954 0.905 0.874 43.42 36.34 30.18 28.45 41.93 37.17 29.41 29.25
Spain 0.959 0.978 0.954 0.965 50.42 47.47 51.81 54.50 47.68 51.39 55.12 55.81
Sweden 1.080 1.076 1.133 1.186 27.30 13.88 6.14 4.22 21.02 12.46 6.75 6.36
Switzerland 1.056 1.077 1.079 1.115 38.76 30.11 29.34 29.19 34.45 29.13 28.73 29.81
United Kingdom 0.968 1.010 1.026 1.027 36.26 31.89 27.75 24.94 30.11 29.22 25.87 21.79
United States 0.975 0.961 0.962 0.972 51.02 50.57 50.56 49.84 54.09 55.28 57.03 53.74

SOURCE: Author's calculations.

NOTES: RMSE = root mean squared error; AR(1) = Lag 1 autoregression; LC = Lee-Carter Model.

Table 8.
Ratio of RMSE in median forecasts of the age profile and percentage of forecasts below actual,
by country and forecast horizon

Country

Ratio of RMSE AR(1)/LC LC: Below actual (percent) AR(1): Below actual (percent)
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1–5 6–10 11–15
16 or
more 1–5 6–10 11–15

16 or
more 1–5 6–10 11–15

16 or
more

Austria 1.169 1.194 1.198 1.193 84.32 100.00 100.00 100.00 93.58 100.00 100.00 100.00
Belgium 1.057 1.004 0.982 0.974 78.80 100.00 100.00 100.00 88.06 100.00 100.00 100.00
Canada 1.024 1.012 1.005 0.994 82.10 100.00 100.00 100.00 83.05 100.00 100.00 100.00
Denmark 1.102 1.082 1.106 1.139 62.42 61.24 75.61 97.89 68.76 71.10 80.13 97.89
Finland 1.068 0.977 0.938 0.952 78.36 90.55 100.00 100.00 80.78 90.55 100.00 100.00
France 0.800 0.468 0.516 0.595 86.54 100.00 100.00 100.00 95.94 97.71 100.00 100.00
Germany 0.977 0.954 0.929 0.931 90.93 100.00 100.00 100.00 92.67 100.00 100.00 100.00
Italy 1.025 0.981 0.981 0.995 92.96 100.00 100.00 100.00 95.61 100.00 100.00 100.00
Japan 0.907 0.842 0.795 0.901 36.63 17.32 1.54 24.18 48.30 29.91 5.76 32.83
Netherlands 1.193 1.344 1.479 1.471 69.87 86.15 93.94 100.00 83.07 95.19 100.00 100.00
Norway 1.020 0.998 0.980 0.971 73.60 79.31 100.00 100.00 76.21 79.31 100.00 100.00
Spain 1.022 0.972 0.912 0.898 55.74 58.69 64.17 93.36 61.03 57.30 60.93 90.54
Sweden 1.225 1.192 1.179 1.180 93.07 100.00 100.00 100.00 98.33 100.00 100.00 100.00
Switzerland 1.083 1.048 1.035 1.044 80.33 96.95 100.00 100.00 86.14 98.00 100.00 100.00
United Kingdom 1.151 1.127 1.115 1.113 95.80 100.00 100.00 100.00 98.33 100.00 100.00 100.00
United States 1.097 1.255 1.390 1.525 43.78 36.78 37.23 21.47 38.04 33.15 33.47 5.43

SOURCE: Author's calculations.

NOTES: RMSE = root mean squared error; AR(1) = Lag 1 autoregression; LC = Lee-Carter Model.

Table 9.
Ratio of RMSE in median forecasts of life expectancy at birth e 0  and percentage of forecasts
below actual, by country and forecast horizon

Country

Ratio of RMSE AR(1)/LC LC: Below actual (percent) AR(1): Below actual (percent)

1–5 6–10 11–15
16 or
more 1–5 6–10 11–15

16 or
more 1–5 6–10 11–15

16 or
more

Austria 1.182 1.170 1.158 1.134 90.10 100.00 100.00 100.00 99.13 100.00 100.00 100.00
Belgium 0.964 0.924 0.913 0.908 88.46 100.00 100.00 100.00 92.02 100.00 100.00 100.00
Canada 1.022 1.001 0.993 0.961 85.11 98.89 100.00 100.00 87.15 100.00 100.00 100.00
Denmark 1.065 1.030 1.023 1.015 65.15 63.16 75.70 97.89 67.70 66.52 75.59 97.89
Finland 1.005 0.958 0.941 0.945 86.23 98.89 100.00 100.00 94.53 100.00 100.00 100.00
France 0.989 0.927 0.902 0.884 88.32 100.00 100.00 100.00 94.66 100.00 100.00 100.00
Germany 0.987 0.960 0.947 0.932 93.75 100.00 100.00 100.00 95.53 100.00 100.00 100.00
Italy 1.026 1.008 1.012 1.023 93.70 100.00 100.00 100.00 94.57 100.00 100.00 100.00
Japan 0.998 1.024 1.054 0.974 61.45 67.19 74.09 100.00 67.91 72.54 83.06 100.00
Netherlands 1.138 1.181 1.241 1.243 72.49 90.54 98.57 100.00 84.07 96.36 100.00 100.00
Norway 0.970 0.946 0.925 0.919 77.61 93.06 100.00 100.00 81.05 89.60 100.00 100.00
Spain 0.966 0.880 0.867 0.891 72.71 92.19 100.00 100.00 75.24 94.36 98.46 100.00
Sweden 1.198 1.167 1.156 1.158 90.61 100.00 100.00 100.00 98.33 100.00 100.00 100.00
Switzerland 1.064 1.036 1.021 1.022 90.20 100.00 100.00 100.00 91.80 100.00 100.00 100.00
United Kingdom 1.070 1.040 1.033 1.035 95.80 100.00 100.00 100.00 98.33 100.00 100.00 100.00
United States 1.042 1.146 1.240 1.252 40.36 28.64 18.46 0.00 36.55 14.80 8.69 0.00

SOURCE: Author's calculations.

NOTES: RMSE = root mean squared error; AR(1) = Lag 1 autoregression; LC = Lee-Carter Model.

Table 10.
Ratio of RMSE in median forecasts of age dependency ratio δ 1  and percentage of forecasts
below actual, by country and forecast horizon

Country

Ratio of RMSE AR(1)/LC LC: Below actual (percent) AR(1): Below actual (percent)
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1–5 6–10 11–15
16 or
more 1–5 6–10 11–15

16 or
more 1–5 6–10 11–15

16 or
more

Austria 1.192 1.170 1.150 1.115 92.10 100.00 100.00 100.00 97.39 100.00 100.00 100.00
Belgium 0.915 0.877 0.870 0.861 88.46 100.00 100.00 100.00 92.02 100.00 100.00 100.00
Canada 1.020 0.995 0.986 0.944 86.15 98.89 100.00 100.00 86.28 98.89 100.00 100.00
Denmark 1.051 1.009 0.983 0.948 68.00 66.64 77.03 97.89 67.89 66.66 74.16 97.89
Finland 0.901 0.846 0.836 0.851 91.14 100.00 100.00 100.00 94.62 100.00 100.00 100.00
France 0.805 0.800 0.817 0.821 88.22 100.00 100.00 100.00 80.34 97.71 100.00 100.00
Germany 0.996 0.968 0.960 0.938 91.97 100.00 100.00 100.00 95.61 100.00 100.00 100.00
Italy 1.007 0.993 0.998 1.008 92.83 100.00 100.00 100.00 94.57 100.00 100.00 100.00
Japan 1.002 1.027 1.020 0.957 68.74 73.58 91.90 100.00 68.78 79.85 91.90 100.00
Netherlands 1.101 1.103 1.136 1.140 71.61 93.94 100.00 100.00 84.94 97.70 100.00 100.00
Norway 0.947 0.920 0.900 0.896 81.57 97.78 100.00 100.00 82.13 94.24 100.00 100.00
Spain 0.924 0.848 0.834 0.851 78.92 95.73 100.00 100.00 80.50 92.19 100.00 100.00
Sweden 1.172 1.141 1.130 1.131 88.78 100.00 100.00 100.00 97.50 100.00 100.00 100.00
Switzerland 1.018 0.985 0.974 0.983 91.00 100.00 100.00 100.00 92.63 100.00 100.00 100.00
United Kingdom 1.032 0.994 0.988 0.989 94.93 100.00 100.00 100.00 98.33 100.00 100.00 100.00
United States 1.015 1.134 1.237 1.199 32.64 33.92 15.25 0.00 29.81 24.55 0.00 0.00

SOURCE: Author's calculations.

NOTES: RMSE = root mean squared error; AR(1) = Lag 1 autoregression; LC = Lee-Carter Model.

Table 11.
Ratio of RMSE in median forecasts of the age dependency ratio δ 2  and percentage of forecasts
below actual, by country and forecast horizon

Country

Ratio of RMSE AR(1)/LC LC: Below actual (percent) AR(1): Below actual (percent)

LC AR(1) LC AR(1)/LC LC AR(1) LC AR(1)/LC

Austria 66.02 74.43 0.006 3.559 71.66 24.58 3.666 0.544
Belgium 81.97 89.05 0.011 2.831 100.00 100.00 5.287 0.839
Canada 63.56 82.01 0.003 4.648 76.44 100.00 1.977 1.295
Denmark 87.74 98.57 0.006 8.742 99.78 100.00 4.652 1.112
Finland 79.10 98.07 0.010 9.545 100.00 100.00 5.760 1.542
France 99.88 99.89 0.018 1.517 100.00 100.00 9.955 1.131
Germany 59.06 63.10 0.010 1.450 61.54 44.29 3.101 0.711
Italy 75.26 97.67 0.008 6.173 99.13 100.00 5.770 1.263
Japan 36.43 56.11 0.005 4.696 100.00 100.00 2.490 1.369
Netherlands 97.55 99.92 0.011 3.924 100.00 100.00 6.792 0.998
Norway 66.84 96.29 0.004 7.896 94.01 100.00 3.789 1.078
Spain 84.09 99.99 0.006 4.656 100.00 100.00 5.720 1.219
Sweden 90.88 99.16 0.009 7.251 100.00 100.00 7.124 1.387
Switzerland 91.27 94.82 0.010 3.979 100.00 100.00 5.183 0.847
United Kingdom 71.22 88.34 0.007 4.460 92.36 100.00 5.476 0.968
United States 67.80 82.29 0.006 1.377 99.81 99.81 2.488 0.933

NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Country

SOURCE: Author's calculations.

Table 12.
Empirical coverage and ratios of average width for the 90-percent interval projections of the age
profile and life expectancy at birth, by country

Empirical coverage
(percent) Average width

Empirical coverage
(percent) Average width

Age profile Life expectancy at birth
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LC AR(1) LC AR(1)/LC LC AR(1) LC AR(1)/LC

Austria 41.03 24.99 0.043 0.834 36.59 26.54 0.035 1.015
Belgium 54.24 100.00 0.057 1.088 35.38 91.71 0.042 1.302
Canada 39.44 100.00 0.024 1.943 30.45 100.00 0.020 2.258
Denmark 95.33 100.00 0.052 1.843 91.76 100.00 0.038 2.401
Finland 59.16 100.00 0.061 1.792 38.01 100.00 0.042 2.292
France 100.00 100.00 0.114 0.827 100.00 100.00 0.084 1.131
Germany 52.81 57.84 0.044 0.966 54.56 59.74 0.039 1.020
Italy 58.58 100.00 0.069 1.597 38.65 100.00 0.055 1.766
Japan 95.17 100.00 0.039 1.840 79.44 100.00 0.034 2.019
Netherlands 100.00 100.00 0.082 1.363 100.00 100.00 0.065 1.545
Norway 34.66 100.00 0.038 1.902 25.80 100.00 0.026 2.608
Spain 100.00 100.00 0.071 1.550 100.00 100.00 0.057 1.727
Sweden 100.00 100.00 0.086 1.916 99.65 100.00 0.067 2.191
Switzerland 95.71 95.87 0.070 0.935 88.41 95.87 0.058 1.051
United Kingdom 42.23 100.00 0.058 1.548 26.36 100.00 0.042 1.962
United States 99.81 99.81 0.040 0.920 99.62 98.72 0.036 0.890

NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Country

SOURCE: Author's calculations.

Table 13.
Empirical coverage and ratios of average width for the 90-percent interval projections of the age
dependency ratios δ1 and δ2, by country

Empirical coverage
(percent) Average width

Empirical coverage
(percent) Average width

Age dependency ratio δ1 Age dependency ration δ2

Average 
width

Average 
width

Average 
width

LC AR(1) AR(1)/LC LC AR(1) AR(1)/LC LC AR(1) AR(1)/LC

Austria 85.07 97.20 0.452 81.22 76.91 0.963 32.85 54.96 4.086
Belgium 99.62 99.12 0.506 92.18 91.82 1.033 56.23 78.30 3.142
Canada 97.35 97.63 0.804 55.78 68.16 1.699 49.42 88.67 5.217
Denmark 98.38 98.28 0.762 94.61 97.80 1.215 71.33 99.78 10.820
Finland 99.69 99.26 0.559 86.45 98.24 1.926 54.94 96.98 11.065
France 100.00 100.00 0.571 100.00 100.00 1.638 99.64 99.67 1.558
Germany 77.00 66.16 0.377 48.93 54.09 0.976 59.26 72.47 1.518
Italy 99.96 90.21 0.584 88.58 100.00 1.551 40.49 100.00 7.279
Japan 36.74 38.22 0.538 34.93 35.72 0.858 38.15 95.12 5.093
Netherlands 99.86 99.67 0.558 100.00 100.00 1.097 92.75 100.00 4.475
Norway 93.22 91.51 0.732 85.65 96.45 1.298 23.80 99.51 10.172
Spain 99.96 99.96 0.713 93.41 100.00 1.434 60.78 100.00 5.615
Sweden 99.33 96.47 0.513 99.98 100.00 1.560 73.14 100.00 8.693
Switzerland 97.16 98.09 0.530 96.77 96.65 1.025 79.99 90.14 4.363
United Kingdom 100.00 92.49 0.479 85.39 85.31 1.119 32.44 89.26 5.503
United States 72.73 86.30 0.700 59.03 79.48 1.226 75.57 83.04 1.414

Table 14.
Empirical coverage and ratios of average width for the 90-percent interval projections of mortality,
by country and broad age-categories

SOURCE: Author's calculations.

NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Empirical coverage
(percent)

Ages 0–19 Ages 20–64 Aged 65–95 or older

Country

Empirical coverage
(percent)

Empirical coverage
(percent)
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1–5 6–10 11–15
16 or
more 1–5 6–10 11–15

16 or
more 1–5 6–10 11–15

16 or
more

Austria 74.40 73.15 68.16 54.97 86.38 81.83 73.84 62.69 3.391 3.226 3.425 3.825
Belgium 91.62 86.60 78.58 75.16 97.09 94.05 86.25 82.65 2.933 2.749 2.757 2.877
Canada 68.60 65.22 62.07 60.30 92.80 85.96 78.96 74.72 4.635 4.398 4.528 4.829
Denmark 83.44 87.29 89.52 89.24 97.44 97.61 98.55 99.63 8.199 7.950 8.338 9.301
Finland 90.09 87.30 77.43 68.14 99.05 99.09 97.97 96.88 7.861 8.143 9.007 10.929
France 99.45 100.00 100.00 100.00 99.86 100.00 99.63 100.00 1.634 1.530 1.511 1.489
Germany 72.32 67.19 63.57 42.87 80.82 73.46 69.18 41.74 1.602 1.454 1.419 1.430
Italy 88.85 80.80 73.01 64.71 99.65 99.55 97.45 95.39 5.788 5.807 6.046 6.474
Japan 75.53 49.42 25.26 10.87 83.94 64.89 48.02 38.29 4.086 4.158 4.545 5.225
Netherlands 95.96 98.19 98.30 97.67 99.63 100.00 100.00 100.00 3.990 3.773 3.826 4.009
Norway 72.26 70.65 66.57 61.23 94.95 94.11 94.54 99.59 7.717 7.395 7.694 8.265
Spain 87.63 83.28 81.56 83.99 99.96 100.00 100.00 100.00 4.557 4.421 4.523 4.829
Sweden 92.63 94.20 93.31 86.71 99.34 98.58 98.62 99.68 7.009 6.892 7.086 7.497
Switzerland 90.17 93.94 95.03 88.61 97.52 98.99 97.68 89.95 4.019 3.806 3.884 4.064
United Kingdom 87.02 80.69 69.02 58.39 98.65 95.06 89.78 78.07 4.632 4.349 4.366 4.503
United States 71.20 69.71 68.12 64.29 86.42 85.39 87.48 74.52 1.623 1.463 1.384 1.283

SOURCE: Author's calculations.

NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Table 15.
Empirical coverage and ratios of average width for the 90-percent interval projections of the age profile,
by country and forecast horizon

Country

Empirical coverage LC
(percent)

Empirical coverage AR(1)
(percent) Average width AR(1)/LC

1–5 6–10 11–15
16 or
more 1–5 6–10 11–15

16 or
more 1–5 6–10 11–15

16 or
more

Austria 100.00 100.00 95.78 21.18 79.31 30.57 3.21 0.00 0.577 0.546 0.538 0.538
Belgium 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.868 0.833 0.828 0.839
Canada 100.00 100.00 94.29 35.83 100.00 100.00 100.00 100.00 1.258 1.240 1.282 1.335
Denmark 100.00 98.89 100.00 100.00 100.00 100.00 100.00 100.00 1.181 1.093 1.094 1.112
Finland 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.425 1.420 1.480 1.659
France 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.132 1.224 1.184 1.066
Germany 98.95 92.27 84.37 4.69 95.84 66.10 41.81 0.00 0.725 0.704 0.706 0.713
Italy 100.00 100.00 100.00 97.50 100.00 100.00 100.00 100.00 1.355 1.290 1.256 1.233
Japan 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.161 1.220 1.342 1.526
Netherlands 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.059 0.995 0.991 0.988
Norway 99.00 89.69 83.73 100.00 100.00 100.00 100.00 100.00 1.113 1.064 1.061 1.083
Spain 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.257 1.208 1.204 1.221
Sweden 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.465 1.402 1.385 1.368
Switzerland 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.902 0.852 0.842 0.836
United Kingdom 100.00 100.00 100.00 79.63 100.00 100.00 100.00 100.00 1.041 0.980 0.966 0.949
United States 99.13 100.00 100.00 100.00 99.13 100.00 100.00 100.00 0.882 0.908 0.925 0.959

SOURCE: Author's calculations.

NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Table 16.
Empirical coverage and ratios of average width for the 90-percent interval projections of life expectancy
at birth e 0 , by country and forecast horizon

Country

Empirical coverage LC
(percent)

Empirical coverage AR(1)
(percent) Average width AR(1)/LC
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1–5 6–10 11–15
16 or
more 1–5 6–10 11–15

16 or
more 1–5 6–10 11–15

16 or
more

Austria 92.16 66.38 30.19 0.00 78.27 35.15 1.54 0.00 0.903 0.830 0.818 0.828
Belgium 91.20 80.63 58.63 11.91 100.00 100.00 100.00 100.00 1.125 1.068 1.071 1.096
Canada 73.99 69.83 37.63 0.00 100.00 100.00 100.00 100.00 1.938 1.868 1.909 1.993
Denmark 92.94 87.91 95.80 100.00 100.00 100.00 100.00 100.00 1.979 1.820 1.816 1.835
Finland 99.13 90.72 66.10 10.12 100.00 100.00 100.00 100.00 1.721 1.662 1.725 1.902
France 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.863 0.822 0.819 0.825
Germany 98.95 88.43 55.56 0.00 98.95 88.43 70.84 4.91 1.007 0.957 0.953 0.966
Italy 98.13 93.52 63.08 9.20 100.00 100.00 100.00 100.00 1.697 1.619 1.588 1.570
Japan 95.61 98.82 100.00 89.58 100.00 100.00 100.00 100.00 1.638 1.669 1.798 2.002
Netherlands 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.460 1.356 1.350 1.351
Norway 80.67 49.54 29.24 0.00 100.00 100.00 100.00 100.00 1.982 1.888 1.883 1.899
Spain 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.592 1.518 1.524 1.565
Sweden 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 2.006 1.929 1.914 1.894
Switzerland 99.20 100.00 100.00 89.67 100.00 100.00 100.00 89.67 1.003 0.928 0.923 0.929
United Kingdom 91.74 77.30 33.69 0.00 100.00 100.00 100.00 100.00 1.709 1.572 1.542 1.509
United States 99.13 100.00 100.00 100.00 99.13 100.00 100.00 100.00 0.949 0.919 0.915 0.917

SOURCE: Author's calculations.

NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Table 17.
Empirical coverage and ratios of average width for the 90-percent interval projections of the age-
dependency ratio δ1, by country and forecast horizon

Country

Empirical coverage LC
(percent)

Empirical coverage AR(1)
(percent) Average width AR(1)/LC

1–5 6–10 11–15
16 or
more 1–5 6–10 11–15

16 or
more 1–5 6–10 11–15

16 or
more

Austria 87.24 61.34 19.72 0.00 82.96 37.58 1.54 0.00 1.077 0.992 0.987 1.024
Belgium 85.38 53.00 24.37 0.00 95.12 92.84 94.64 87.05 1.348 1.274 1.278 1.315
Canada 68.42 54.41 17.25 0.00 100.00 100.00 100.00 100.00 2.276 2.175 2.208 2.314
Denmark 87.62 84.48 89.22 98.75 100.00 100.00 100.00 100.00 2.591 2.381 2.369 2.384
Finland 86.78 61.57 26.50 0.00 100.00 100.00 100.00 100.00 2.148 2.097 2.198 2.460
France 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.973 1.082 1.149 1.180
Germany 98.95 91.10 60.91 0.00 98.95 93.38 74.60 4.91 1.069 1.012 1.007 1.019
Italy 94.13 67.32 16.36 0.00 100.00 100.00 100.00 100.00 1.891 1.798 1.754 1.731
Japan 89.73 95.27 96.46 52.49 100.00 100.00 100.00 100.00 1.828 1.843 1.971 2.178
Netherlands 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.665 1.538 1.529 1.529
Norway 61.45 42.13 15.12 0.00 100.00 100.00 100.00 100.00 2.760 2.613 2.593 2.578
Spain 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.813 1.713 1.702 1.725
Sweden 98.33 100.00 100.00 100.00 100.00 100.00 100.00 100.00 2.278 2.195 2.187 2.173
Switzerland 99.20 100.00 98.33 72.25 100.00 100.00 100.00 89.67 1.136 1.050 1.040 1.039
United Kingdom 79.42 41.04 6.06 0.00 100.00 100.00 100.00 100.00 2.171 1.985 1.944 1.919
United States 98.26 100.00 100.00 100.00 99.13 100.00 100.00 96.88 0.947 0.899 0.887 0.876

SOURCE: Author's calculations.

NOTES: LC = Lee-Carter Model; AR(1) = Lag 1 autoregression.

Table 18.
Empirical coverage and ratios of average width for the 90-percent interval projections of the age-
dependency ratio δ2, by country and forecast horizon

Country

Empirical coverage LC
(percent)

Empirical coverage AR(1)
(percent) Average width AR(1)/LC
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Chart 1.
Surfaces and contours of the age profile of logarithmic mortality for the United States
and the United Kingdom

SOURCE: Author’s calculations from the Human Mortality Database.
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Chart 2.
Mortality projections for ages 10–14 and ages 70–74 for the United States (1980–2002) and
the United Kingdom (1980–2003)

SOURCE: Author’s calculations.

NOTE: AR(1) = Lag 1 autoregression.
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Chart 3.
Life expectancy at birth and old-age dependency ratios for the United States and the United Kingdom

SOURCE: Author’s calculations.

NOTE: AR(1) = Lag 1 autoregression.
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Chart 4.
Projections of old-age dependency ratios for the United States (1980-2002) and
the United Kingdom (1980-2003)

SOURCE: Author’s calculations.

NOTE: AR(1) = Lag 1 autoregression.
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