BRAIN IMAGING, BLOOD AND CEREBROSPINAL FLUID BIOMARKERS FOR DIAGNOSIS OF ALZHEIMER’S DISEASE

Michael W. Weiner MD
Director, Center for Imaging of Neurodegenerative Diseases, VA Medical Center
Professor of Radiology, Medicine, Psychiatry, and Neurology, UCSF
TOPICS REQUESTED

- Current use of imaging/biomarkers in diagnosis
- Current use of imaging/biomarkers in research
- Distinguish FDA approved/non-approved diagnostic tests
- What should be considered as definitive for Social Security’s purposes???????
GENERAL USE OF TECHNOLOGY FOR DIAGNOSIS

• A century ago, all medical diagnosis was based on self-report/physical exam

• Widespread use of technology for diagnosis, early detection, risk assessment
 – Blood tests, imaging, EKG, etc

• Most diagnosis of neurological/psychiatric disorders based on self report/physical examination
 – Imaging/biomarkers have limited but growing use
CURRENT DIAGNOSIS OF ALZHEIMER’S DISEASE

- Clinical diagnosis
- Requires presence of dementia
- Growing recognition that AD pathology exists for many years prior to dementia
 - Asymptomatic phase
 - Mild symptoms, mild cognitive impairments
 - Dementia
IMAGING FOR DIAGNOSIS OF ALZHEIMER’S DISEASE

• Uses:
 – Diagnosis
 – Prediction of future decline/dementia (Research!)
 • early detection
 • Risk assessment
 – Clinical trials

• Imaging Modalities
 – Computerized tomography
 – MRI: many types of MRI scans
 – PET: FDG, amyloid scans
STRUCTURAL MRI
Normal Elderly Brain (FDA approved)
Alzheimer’s Atrophy

Age: 62
Sex: Male
Dx: AD Probable
Alzheimer’s Atrophy

Age: 87
Sex: Female
Dx: AD Probable
Frontal-Temporal Dementia (FTD)

Age: 52
Sex: Female
Dx: FTD
WMSH With Lacunes

Age: 80
Sex: Male
Dx: IVD
USE OF MRI

• Rules out other causes
 – Tumors, bleeding, multiple sclerosis etc
 – Suggests other causes of dementia
 • Frontotemporal dementia

• Provides confirmatory evidence
 – Atrophy of brain esp hippocampus: not diagnostic

• Many research uses
 – Emphasis on predicting future decline
 – Identifying AD pathology
POSITRON EMISSION TOMOGRAPHY (PET)

• Fluro Deoxyglucose PET: FDA approved
 – Widely used for cancer staging
 – Approved by CMS for ‘differentiating AD from FTD (long story)
 • Some evidence of widespread abuse/misuse
 – Not approved for Dx of AD
• FDG PET does help “rule in” AD
• Many research uses
Normal Aging vs. Alzheimer’s Disease
Positron Emission Tomography (PET)

Normal

AD
AMYLOID PET

• A technique to detect presence of amyloid plaques in the brain
 – Amyloid plaques = AD pathology (?)
• Carbon 11 Pittsburgh compound B
• Four commercially produced F18 amyloid agents: GE, Bayer, AstraZeneca, AVID
 – In phase 3
• Likely to be approved ‘to detect amyloid’
 – Diagnostic claims uncertain
PIB Imaging: Alzheimer’s Disease

FDG

PIB
FDA AND PIB PET
Frontotemporal Dementia
WHAT IS ROLE OF AMYLOID PET FOR DIAGNOSIS ETC?

• Currently undetermined
• Could be used to “rule out” AD pathology
• Could be used for early detection of AD pathology
 – A risk factor for cognitive decline/dementia
 – PIB+ seems to predict future decline/dementia
• Lots of research to do: will take years
BLOOD AND CSF BIOMARKERS

• Abeta amyloid (various species)
 – Measurement in CSF
 • Seems to have some diagnostic use
 • Use by some in clinical practice: not widespread
 – Measurement in blood: research value only

• Tau: a measure of neurodegeneration in CSF
 – May have clinical value: lots of research

• Other proteins: Blood and CSF

• RNA expression: Blood
BIOMARKERS

John Trojanowski, Les Shaw, U Penn.

<table>
<thead>
<tr>
<th></th>
<th>Tau</th>
<th>αβ_{1-42}</th>
<th>P-Tau_{181P}</th>
<th>Tau/αβ_{1-42}</th>
<th>P-Tau_{181P}/αβ_{1-42}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD (n=102)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>122±58</td>
<td>143±41</td>
<td>42±20</td>
<td>0.9±0.5</td>
<td>0.3±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCI (n=200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>103±61</td>
<td>164±55</td>
<td>35±18</td>
<td>0.8±0.6</td>
<td>0.3±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC (n=114)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>70±30</td>
<td>206±55</td>
<td>25±15</td>
<td>0.4±0.3</td>
<td>0.1±0.1</td>
</tr>
</tbody>
</table>

p<0.0001, for each of the 5 biomarker tests for AD vs NC and for MCI vs NC.

For AD vs MCI: p<0.005, Tau; p<0.01, αβ_{1-42}; p<0.01, P-Tau_{181P}; p<0.0005, Tau/αβ_{1-42}; p<0.005, P-Tau_{181P}/αβ_{1-42}. Mann-Whitney test
PIB vs CSF Biomarkers: Aβ

Total N = 55 (11 Control, 34 MCI, 10 AD)

Penn Autopsy Sample (56 AD, 52 Cog normal) 192 pg/ml
AMYLOID IMAGING VS CSF ANALYSIS

• Thus far CSF analysis ($300) seems to provide similar predictive information to amyloid imaging ($>3000)
• But there is resistance to lumbar puncture
• More research needed
• Public acceptance of LPs would be helpful
USING IMAGING/CSF BIOMARKERS TO DETECT AD IN HEALTHY normals

• Early data suggests that a substantial minority of healthy normal
 – + amyloid imaging
 – Low CSF amyloid
• These subjects may be at increased risk for cognitive decline and dementia
• Much important research to do
• Technologies will improve
DIFFUSION SPECTRUM IMAGING MEASURES BRAIN CONNECTIVITY
SUMMARY

• Currently MRI is approved
 – To rule out other causes of dementia
 – Also provide evidence in favor of Dx
• FDG PET approved AD/FTD
 – Also provides evidence in favor of Dx
• CSF analysis is used by some
 – For diagnosis risk assessment
• F 18 amyloid imaging has promise
 – Advantage over CSF?
• Much research to be done
NA-ADNI
Planned n=800
~60M USD

EU-ADNI
AddNeuroMed n=700
Pilot E-ADNI n=59
~8.6M Euro

J-ADNI
Planned n=600
4.7M USD / year

A-ADNI
N=1111; 286 MRI
2.5M USD

WW-ADNI
COSTS TO SOCIAL SECURITY

• Dementia already costs US economy over $120 billion/yr
• AD research is underfunded compared to heart disease (NHBL) and cancer (NCI)
• How could SS/CMS funds be used to support dementia prevention research?
• It would be useful to estimate the savings to SSN/CMS by treatment/prevention of AD